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Abstract: Control of real driving soot emissions in diesel vehicles requires accurate predictive
models for engine-out soot emissions. This paper presents an innovative modeling approach
that combines a physics-based model and a black-box model to predict soot from a 4.5-liter
compression ignition engine under varying load and speed conditions. The physical model is
based on an experimentally validated 1D engine model in GT-power. In contrast, the black-box
model is designed by investigating different machine learning approaches, including a Bayesian
neural network (BNN), support vector machine (SVM), regression tree, and an ensemble of
regression tree. The experimental data from running the engine at 219 load and speed conditions
are collected and used for training and testing the soot model. The least absolute shrinkage and
selection operator (LASSO) feature selection method is used on the GT model outputs to find
the most critical parameters in soot prediction. The grey-box modeling results are compared
with those from the black-box as well as the physical model. The results show that the grey-
box SVM and black-box single hidden layer BNN method provide the best performance with
a coefficient of determination (R2) of 0.95. For most cases, grey-box models outperform the
black-box models with the same Machine Learning (ML) algorithm by comparing R2 of the test
data, but this difference becomes negligible when a single hidden layer neural network is used.

Keywords: Diesel engines, Soot emissions, Machine learning, grey-box modeling, Physical
model, data-driven modeling

1. INTRODUCTION

Heavy-duty and medium-duty diesel engines are com-
monly used in the transportation sector, and they are a sig-
nificant source of soot emission generation which is highly
harmful to human health (Omidvarborna et al., 2015).
New legislation regulate soot emission under real driving
emission (RDE) (EuroVI, 2016). Despite substantial en-
gine calibration effort, robust emission control solutions
can not be guaranteed. Developing predictive soot models
and model-based soot emission control and calibration are
a promissing the solution to address RDE soot emissions in
vehicles. However, predicting soot emissions is challenging
and often more complex than predicting other engine-out
emissions (Omidvarborna et al., 2015; Rezaei et al., 2020).
State-of-the-art physical soot models still do not predict
engine-out soot emissions for broad engine speed and load
conditions. Furthermore, physical models for emissions
often require high computational efforts, especially for soot
emissions (Omidvarborna et al., 2015; Gordon et al., 2020;
Norouzi et al., 2019; Shahpouri and Houshfar, 2019; Amani
et al., 2018) that can not be accommodated in ECU for
real-time emission control RDE conditions. This paper
investigates Machine Learning (ML) methods in a black-
box and grey-box framework to assess their accuracy for
use in engine emission controls.

? Corresponding Author: Saeid Shahpouri-(e-mail: shah-
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NOMENCLATURE

ANN Artificial Neural Network
BNN Bayesian neural network
ECU Engine Control Unit
ERT Ensemble of Regression Trees
GA Genetic Algorithm
HL Hidden Layer
LASSO Least Absolute Shrinkage and Selection Opera-

tor
ML Machine Learning
MSE Mean Square of Error
MSL Min Samples Leaf
RBF Radial Basis Function
RDE Real Driving Emission
RMSE Root Mean Square of Error
RT Regression Tree
SNN Shallow Neural Network
SVM support vector machine

Data-driven or black-box emission models use the experi-
mental engine data for emission prediction. These models
use the measured inputs and outputs of the engine. Artifi-
cial Neural Network (ANN) and Support Vector Machine
(SVM) are the most common data-driven models used
for emission modeling of diesel engines (Khurana et al.,



2021; Norouzi et al., 2020b,a; Aliramezani et al., 2020a).
Although data-driven models have low real time compu-
tation, they do not contain any physical relations of the
system dynamics. They are also limited in responding to
the changes in the underlying physics and, for the con-
ditions outside of the training data, where extrapolation
results in poor accuracy. In transient engine conditions
this could occure. To overcome this, grey-box modeling
approaches have been used to combine the advantages of
the physical and supervised data-driven methods. Grey-
box models usually use a simple physical model (0D or
1D) to limit computation. Detailed physical 3D models
and unsupervised data-driven methods have been com-
bined for clustering purposes, e.g., dividing the combustion
chamber into different regions based on soot production
(Zhou et al., 2015); however, the resulting model is still
far too complex for real-time engine control. In this study,
a computationally efficient 1D physical model is developed
and used in a grey-box modeling platform for soot emission
prediction.

For grey-box modeling, the physical model is first pa-
rameterized using the experimental data. The grey-box
model then uses the experimental data (inputs and out-
puts) and internal states of the physical model. Grey-
box emission modeling has been used for NOx, CO, and
HC emission modeling in literature (Bidarvatan et al.,
2014). Soot emission modeling using grey-box techniques
has been studied where the grey-box model consisting of a
1D GT-Power physical model and a 3-layer ANN was used
for soot emission modeling (Rezaei et al., 2020). Physical
knowledge about the soot formation was used to select the
ANN inputs in the data-driven portion. In a similar study
(Mohammad et al., 2021), ANN and SVM methods were
trained and deployed for grey box and black box emission
modelling. Both studies show that grey-box emission mod-
eling could improve the soot prediction accuracy compared
to black-box data-driven methods.

The current study expands our previous works (Rezaei
et al., 2020; Mohammad et al., 2021) which used only
ANN and SVM for grey-box and black-box soot modeling.
In this study, a new grey-box modeling platform is de-
signed, and results are assessed for a different engine. The
new platform uses a new combination of inputs that are
optimally selected using search and Bayesian algorithms.
Five different ML methods for soot emission prediction
are evaluated. To do this, first, the engine data including
in cylinder pressure was collected to parameterize the 1D
physical model. Then, steady-state experimental data for
wide ranges of speeds and loads were collected using the
experimental engine setup. The physics-based 1D model
was developed using the experimental data and calibrated
by a Genetic Algorithm (GA) based on experimental in-
cylinder pressure. Next, the black-box and grey-box mod-
els were parameterized and run using the data-driven
ML methods. The LASSO feature selection algorithm was
then employed to select the most significant features for
both the black-box and grey-box approaches. Using the
selected features for the black-box and grey-box methods,
ML models were implemented, and their hyperparameters
were optimized. Consequently, the main contributions of
this work can be summarized here:

• Engine instrumentation and collection of soot emis-
sion data for a diesel engine’s broad operating condi-
tion.

• Created a grey-box soot emission model by designing
a physical 1D model (GT-power) and optimum ML
model selection.

• Applied ML methods of Regression tree, ensemble
learning, and Bayesian Neural Network compared to
commonly used SVM and Shallow Neural network.

2. EXPERIMENTAL SETUP

A 4-cylinder medium-duty diesel engine (Cummins QSB4.5
160 - Tier 3/Stage IIIA) is operated, and engine-out soot
is collected over a wide range of engine speeds and loads.
The engine characteristics are listed in Table 1.

Table 1. Engine specifications

Parameter Value

Engine type In-Line, 4-Cylinder

Displacement 4.5 L

Bore × Stroke 102 mm × 120 mm

Peak torque 624 N.m @ 1500 rpm

Peak power 123 kW @ 2000 rpm

Aspiration Turbocharged and Charge
Air Cooled

Fuel Injection 3 Pulses

Certification Level Tier 3 / Stage IIIA

The experimental engine setup is shown in Fig. 1. A Kistler
piezoelectric pressure sensor and Pico current clamp are
used to measure engine in-cylinder pressure and injector
command signal, respectively. Additionally, fueling infor-
mation, including fuel amount and rail pressure along with
intake air pressure, engine speed, and load, are recorded
from Cummins ECU through INSITE Pro Cummins soft-
ware through the INLINE6 interface. A Pegasor Particle
Sensor (PPS-M) is used to measure particulate matter
(soot) emission. PPS-M is able to detect particle sizes
from 1 µg/m3 to 290 mg/m3 with a sampling rate of
100 Hz and sensor-to-noise-ratio (SNR) equal to 100 dB
which is suitable for engine exhaust.The main PPS-M
sensor’s characteristics are listed in Table 2. The sensor
is connected to the engine-out exhaust through a heated
line to measure soot and to a computer to record particle
mass and particle number. The color map soot data for
219 engine stationary operating conditions from a wide
range of engine speed (x-axis) and load (y-axis) are shown
in Fig. 2. The black dots represent experimental points.

3. GREY-BOX AND BLACK-BOX MODELS

The physical model, black-box, and grey-box are described
briefly in this section. The first step for the physical and
grey-box models is to develop and parameterize the GT-
Power physics-based model. The GT suite software, which
contains several physical and chemical sub-models that
can simulate complex combustion processes, is used to
develop the diesel engine’s physical model. DIPulse model
is employed as the combustion model because it can deal
with multi-injection combustion engines. Approximately
15% of the raw experimental data is used to calibrate



Fig. 1. Engine experimental setup

Fig. 2. Engine-out soot measurements over speed and load
in mg/m3

the combustion model using the GA algorithm in GT-suit
software.

The Hiroyasu model (Hiroyasu et al., 1983) is used for
physical soot prediction. This model is calibrated using
8% of the raw experimental data utilizing the GA algo-
rithm in GT-suit software. The model calibration process
is shown schematically in Fig. 3 where GA-based algorithm
for optimally calibration of combustion parameters and
soot model multi-players are highlighted in green and blue
blocks. The GA algorithm gets the experimental data of

Table 2. The main PPS-M sensor specifications

Parameter Value

Sensor temperature 200 ◦C

Extracted sample temperature -40 up to 850 ◦C

Dilution No need

Time response 0.2 s

Measured particle size range 10 nm and up

Particle number range 300 up to 109 1/cm3

Particle mass range 10−3 up to 300 mg/m3

Sample pressure –20 kPa to +100 kPa

Length/Weight 40 cm/ 3.3 kg

Clean air/Nitrogen supply 10 LPM @ 0.15 MPa

Operating voltage 24 V

Power consumption 6 W

the soot emissions and in cylinder pressure trace data for
some optimization points. Then, the GA algorithms try
different values for the combustion model and soot model
multipliers. These multipliers for combustion model are:
Entertainment Rate Multiplier, Ignition Delay Multiplier,
Premixed Combustion Rate Multiplier and Diffusion Com-
bustion Rate Multiplier. For the soot model, the multi-
pliers are Soot Formation Multiplier and Soot Burn up
Multiplier. These GA algorithms find the optimized values
of these multipliers to minimize the deviation between ex-
perimental and simulation diagram of in cylinder pressure
trace and value of soot emissions. It must be noted that
the calibration process for soot emissions and in cylinder
pressure trace are separate (2 different GA algorithm were
used).

Fig. 4 shows the in-cylinder pressure trace for different
load and speed conditions. Case I (136 [N.m] in 1200
[rpm]) and case IV (353 [N.m] in 2400 [rpm]) are among
optimization points for model calibration while case II
(Case II: 271 [N.m] in 1600 [rpm]) and case III (271 [N.m]
in 2000 [rpm]) are not among calibration points. As a
result, the physical model has acceptable accuracy at both
calibrated and not calibrated points for various load and
speed conditions.

The structure of both black-box and grey-box soot mod-
eling are shown schematically in Fig.5. As shown in Fig.5,
the grey-box and black-box model inputs are identical,
including the injection properties (total mass of injected
fuel, Start of Injection (SOI) and fuel rail pressure), in-
take manifold pressure, Brake Mean Effective Pressure
(BMEP), and engine speed. These experimental features
are directly used in the feature selection algorithm in the
black-box model. However, these features and additional
features, based on the physical-based model are used in the
grey-box model. Finally, as shown in Fig. 3, the selected
experimental engine data for grey-box and black-box mod-
els are used to train a data-driven model using different
ML techniques.

The LASSO feature selection algorithm is used for both
black-box and grey-box models to find the most effec-
tive soot prediction parameters. LASSO is a regression
analysis method that performs both variable selection and
regularization to enhance the model’s prediction accuracy.
For a given pair of training raw data ((xi,raw, yi)) where
xi,raw is all available raw inputs (array of 125 for grey-box
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Fig. 3. Physical model calibration and feature selection process

Fig. 4. Physical-based model validation for four operating points. For experimental cases, in cylinder pressure trace for
50 cycles are plotted. (Case I: 136 [N.m] in 1200 [rpm], Case II: 271 [N.m] in 1600 [rpm], Case III: 271 [N.m] in
2000 [rpm], and Case IV: 353 [N.m] in 2400 [rpm]

and array of 21 for black-box), the Lasso regression cost
function is defined as

J(θ) = MSE(θ) + λ

m∑
i=1

|θi| (1)

Where MSE is Mean Squared Error which is defined as

MSE(θ) =
1

m

m∑
i=1

(yi − ŷi)2 (2)

where ŷi is a predicted output equals to θTxi and m is
number of training data points. In the LASSO regression,
a penalty variable (λ) is used in the cost function to
penalizes the l1 norm. This tends to push the weights
down to precisely zero (induces sparsity in the solution)
resulting in performing an automatic feature selection
(Géron, 2019). This sparsity depends on λ, which is tuned
based on the cross-validation method in the current study.

The feature selection process is schematically shown in
Fig. 3. Using LASSO 10 out of 21 features for the black-box
model and 13 out of 125 features for the grey-box model
are selected. The LASSO algorithm’s penalty parameter,
which affects the number of selected features, is chosen by
the cross-validation method for both black-box and grey-
box models.

Black-box
model

Grey-box
model

Fuel Injection parameters

Manifold Pressure

Experimental
setup

Physical model

Machine
learning

Machine
learning

Selected 
features

BMEP & Engine 
Speed

Physical-model
soot prediction

Grey-box  model
soot prediction

Black-box  model
soot prediction

Fig. 5. Overview of the grey-box and black-box soot
emission model

4. MACHINE LEARNING METHODS

Four supervised learning algorithms for regression pur-
poses that are used are: Regression Trees (RT), Ensemble
of the Regression Trees (ERT), Support Vector Machine
(SVM), and Neural Network (NN). These are used to train
both black and grey-box soot model.



The K-fold cross-validation algorithm with five folds is
used in the models’ training procedure for avoiding over-
fitting. K-fold cross-validation first shuffles the dataset
randomly and then splits the data into k groups. In each
iteration, K-fold algorithms select one group as a fold, fits
a model on the rest of the groups (out of the fold), and
evaluates it on the fold set (Rodriguez et al., 2009).

In general, a data-driven ML method is an optimization
problem to find the best fit for a given data set subject
to system constraints. For a given data set, Dtrain =
(xi, yi), where xi is input features and yi is the measured
output, ML method is an optimization problem of fitting
a parameterized model, ŷ = hθ(xi), where θ is the
parameters set. This optimization problem is defined as

min
θ

J(θ)

s.t. φ(θ)
(3)

where φ(θ) is a function of θ that represent constraints of
optimization, and J(Θ) is a cost function which defined as

J(Θ) = J̄(Θ) + λL2(Θ) (4)

where first term, J̄(Θ), is defined based on error ei(Θ) =
ŷi − yi to minimize prediction error and second term,
L2(Θ), is L2 loss function, which is added to regulate
parameters, Θ. These regulatory parameters or penalized
variable, λ, provide a trade-off between the flatness of
the model and minimizing the training error tolerance
(Bishop, 2006).

Each ML method has hyperparameters to control the
learning process in its optimization problem (Eq. 3),
such as tolerated error (inside constraint function φ(θ)),
regularization parameter (λ), optimization iteration stop
criteria. Finding an optimum hyperparameter that yields
an optimum model helps allow an automatic and efficient
modeling process. In general, an ML algorithm such as
AΛ has N hyperparameters defined as Λ = λ1, λ2, ..., λN ,
the optimum hyperparameters are achieved by solving
following optimization problem (Hutter et al., 2019)

Λ∗ = arg min
Λ
V (hθ(xi),Dtrain,Dvalid) (5)

where V (hθ) measures performance of a model gener-
ated by algorithm AΛ that is calculated based on cross-
validation data set Dvalid. In this study, Bayesian opti-
mization (Snoek et al., 2012) is used to tune hyperparam-
eters of RT, SVM, and Ensemble of the Regression Trees
(ERT) models. Here, the MSE is used as an evaluation
function in Eq. 5 as

V (λ) = MSE(λ) =
1

n

m∑
i=1

(ŷi − yi)2 (6)

where AΛ ∈ {RT,ERT,SVM} and m is size of training
set. Inside this optimization, the model is trained based
on training set Dtrain and evaluated using cross-validation
set Dvalid based on K-fold algorithm. Then, MSE(λ) is
calculated based on the whole training set including both
Dtrain and Dvalid. Thus, the K-fold algorithm is run inside
hyperparamter optimization problem.

The grid search method (Géron, 2019) is used to tune the
NN-based method (ANN and BNN). The main difference
is that in grid search, all the possible hyperparameters
combinations within a given range are tried, while for
a Bayesian method a search along the space of hyper-

parameters learning with high probability is performed.
The preference of a grid search for ANN and BNN over
Bayesian optimization is to evaluate all combinations of
layer and neuron to allow comparison to our previous work
(Mohammad et al., 2021). In the grid search all combi-
nation of layer L ∈ {1, 2} and neurons sl ∈ (1, 40) are
considered where L is number of layers and sl is number
of neurons in lth layer. To avoid a deeper network (due
to the limited number of training data points) the layers
and neuron’s upper limit set to 2 layers and 40 neurons,
respectively.

The summary of developed models, hyperparameter opti-
mization method, optimized parameters, and each model
configuration are listed in Table 3.

Regression Tree (RT) is a predictive modeling approach
where the main algorithm to train RT is Classification and
Regression Trees (CART) (Breiman et al., 1984). The cost
function of RT based on notation in Eq. 3 is

J(θ) =
mleft

m
MSEleft +

mright

m
MSEright (7)

where θ has two component including k (class of instances)
and tk (threshold to split), ŷ = 1

mnode

∑
i∈node y(i), and the

objective is to first split the training set into two subset
mleft and mright using k and tk. One of the essential
regularization parameters of the CART algorithm is that
the minimum number of samples required at a leaf node
(min samples leaf (MSL)) to avoid overfitting when dealing
with regression tasks (Géron, 2019). In this optimization,
the tree’s maximum depth is five (in φθ), which means the
splitting optimization runs in five iterations. According to
Table 3 the optimized value for MSL for the black-box and
grey-box model are one and five, respectively.

Several decision trees are constructed in ERT training,
where aggregation methods, number of learners, and MSL
are three primary hyperparameters to tune. Two main
aggregation methods are Bagging (short for Bootstrap
aggregation) and Boosting (originally called hypothesis
boosting). Bagging uses the same algorithm for every
predictor but trains them on a different random subset of
the training set. Boosting refers to combining several weak
learners and using a sequential architecture to increase
total model accuracy to make a strong learner (Géron,
2019). Different regression models such as RT or SVM
can be used inside ensemble learning, but the ensemble of
regression trees was used in this study. Bayesian optimiza-
tion in each iteration is used for both boosting and bagging
methods and it results in utilizing boosting architecture
for both black-box and grey-box. As the number of grey-
box features is higher than the black-box features, the
ERT requires a higher number of learners for the grey-box
model.

Support Vector Machine (SVM) is a powerful ML method
that capable of performing both classification and regres-
sion tasks. In SVM, convex quadratic programming is
solved to find a correlation between input-output. The cost
function of SVM, based on notation of Eq. 3, is

J(θ) =
1

2
||θ||22 + λ

m∑
i=1

(ζ+
i + ζ−i ) (8)

where ζ−i and ζ+
i are slack variables that perform as

penalty variables to overcome a possible infeasibility of an



Table 3. Training and optimization of ML-based model hyperparameters

Method Opt. method Opt. hyperparameters Model type opt. Model conf.

RT Bayesian min samples leaf (MSL)
black-box MSL = 1
grey-box MSL = 5

ERT Bayesian
Ensemble method, min samples
leaf, and number of learners

black-box Boosting, 28 Learners, and MSL = 4
grey-box Boosting, 35 Learners, and MSL = 5

SVM Bayesian kernel function, γ, and (λ), and ε
black-box kernel function: Quadratic
grey-box kernel function: Gaussian

1-HL ANN Grid search Number of neurons in each layer
black-box network conf.: [19]
grey-box network conf.: [4]

2-HL ANN Grid search Number of neurons in each layer
black-box network conf.: [25,31]
grey-box network conf.: [4, 13]

1-HL BNN Grid search Number of neurons in each layer
black-box network conf.: [31]
grey-box network conf.: [31]

2-HL BNN Grid search Number of neurons in each layer
black-box network conf.: [16, 13]
grey-box network conf.: [10, 22]

optimization problem where SVM cannot find any value
to fit a function for the defined tolerance. The constraint
function, φ(θ) is defined as

φ(θ) =


yi − hθ(xi) ≤ ε+ ζ+

i

hθ(xi)− yi ≤ ε+ ζ−i
ζ−i , ζ

+
i ≥ 0

(9)

where ε is maximum tolerable deviation for all training
data – see (Norouzi et al., 2020b; Aliramezani et al.,
2020a; Norouzi et al., 2020a) for more detail. The SVM
Kernel Trick can also be used to solve optimization in high
dimensional feature space instead of the input space. In
this study, linear, Polynomial, and Gaussian RBF kernels
are considered in optimization, which are defined as

K(xi, xj) =


xi
Txj Linear

(xi
Txj + c)n Polynomial

exp(−γ||xi − xj ||22) Gaussian RBF

(10)

where n is degree of polynomial and γ is scale of RBF
kernel – see (Aliramezani et al., 2020b) for more detail.
Bayesian optimization results in a Quadratic kernel for
the black-box and Gaussian RBF kernel for the grey-box
model. In these models, λ and ε are 0.78 and 0.32 for the
black-box and 9.6 and 0.004 for the grey-box model.

Another standard method for soot modeling is a Neural
Network (NN), a set of algorithms that distinguish the
correlation between a set of data using rules containing
three main layers: input layer, Hidden Layer (HL), and
output layer. Shallow neural networks (Called ANN in this
study) consist of only 1 or 2 HL while adding more layers
creates a deep network (Hassoun et al., 1995). The cost
function of NN-based modeling is defined as

J(θ) =

m∑
i=1

(hθ(xi)− yi) +
λ

2

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(θ
(l)
j,i)

2 (11)

where L is number of total layers (including input, output,
and hidden layer), sl is number of neurons in lth layer,
and m is size of training set. For single layer and two-
layer NN, L equals 3 and 4, respectively. The main tuning
parameters of ANN are the number of the HL (LHL = L−
2) and the number of neurons (s2 and s3) in the HL,
where a grid search method is used to find the optimum
number of neurons in each hidden layer (Mohammad
et al., 2021). To add probability in ANN, Bayesian-based
Shallow NN, denoted BNN, is also developed for both
black and grey-box soot. In BNN, the weight and bias

values are calculated using similar method to ANN while
minimizing a combination of squared errors and weights to
determine the correct combination to produce a network
that generalizes well (Foresee and Hagan, 1997). In this
optimization method, all ANN and BNN configuration
combinations are evaluated, and the best model based on
cross-validation data evaluation is obtained. Table 3 show
single layer (3-layer network) and two hidden layers (4-
layer network) configuration for ANN and BNN networks
for both black-box and grey-box soot models.

All these models are evaluated using the test data set in
the next part, and results will be discussed.

5. RESULTS AND DISCUSSIONS

To develop the data-driven part of both the black-box
and grey-box model, the collected data is divided into the
training and test data as shown in Fig. 6. For this data
set, 80% is used as training data, Dtrain, while Dvalid is
also included in training for K-fold validation with 5 fold.
20% (44 operating points) of all 219 operating points are
randomly selected to test the developed models accuracy
(Dtest). The test data points are only used for evaluation
of the finalized model.

1000 1200 1400 1600 1800 2000 2200 2400 2600
0

200

400

600

Fig. 6. Training and test data for ML approaches- 175 data
points as train dataset (80%) and 44 data points as
test dataset (20%)

How the methods and models perform are summarized
in Table 4. The coefficient of determination R2, Root
Mean Square of Error (RMSE), and maximum of absolute
prediction error |Emax| from both training and test data
are used to evaluate the different models.

The physical soot model is inaccurate in predicting soot
emission as shown in Figs 7 (a) This is attributed to



Table 4. ML-based data-driven soot model comparison

Methods Criteria RT ERT SVM 1-HL NN 2-HL NN 1-HL BNN 2-HL BNN

black-
box

R2
train 0.98 0.99 0.97 0.97 0.98 0.99 0.99

R2
test 0.87 0.91 0.93 0.90 0.92 0.95 0.94

RMSEtrain [mg/m3] 0.48 0.52 0.66 0.66 0.63 0.22 0.20

RMSEtest [mg/m3] 1.33 1.07 0.98 1.19 1.10 0.83 0.93

|Etrain,max| [mg/m3] 1.6 2.0 2.5 3.2 3.2 1.1 1.1

|Etest,max| [mg/m3] 5.0 3.1 4.8 4.4 4.5 2.9 4.3

grey-box

R2
train 0.97 0.99 0.98 0.96 0.96 0.99 0.99

R2
test 0.92 0.93 0.95 0.90 0.92 0.95 0.95

RMSEtrain [mg/m3] 0.62 0.06 0.48 0.73 0.72 0.34 0.09

RMSEtest [mg/m3] 1.09 1.00 0.81 1.2 0.88 0.88 0.97

|Etrain,max| [mg/m3] 1.9 0.2 1.6 2.8 3.1 1.5 0.4

|Etest,max| [mg/m3] 2.9 3.7 1.9 3.6 2.3 2.3 2.6
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Fig. 7. Prediction vs experiment: (a) Physics-based model, (b) black-box SVM, (c) grey-box SVM, (d) black-box BNN

the complex soot formation and oxidation process that
depends on many factors that can not be captured by
a 1D physical model (Omidvarborna et al., 2015). This
trend was observed in the previous study that used 1D
physical GT power model for soot emissions prediction
(Rezaei et al., 2020). This motivates the use of data-driven
methods for soot emission prediction. The results of black-
box and grey-box methods are analyzed from two per-
spectives. Although using optimization, cross-validation,
and feature selection methods can improve ML techniques
for different ML methods such as RT, ERT, and SVM,
this improvement is limited for neural network-based mod-
eling. Adding physical-based features can improve these
prediction models for soot prediction significantly. The
results are summarized in Table 4. For instance, in the RT
method, using grey-box techniques improves R2 by 5.4%
while decreases RMSE and maximum absolute error by
42.0% for the the test data compared to black-box method.
For ERT and SVM methods, using grey-box techniques im-
proves R2 by 2% and decreases RMSE about 7% and 17%
for ERT and SVM respectively. The grey-box SVM model
significantly reduced absolute error about 50% compare
to the black-box SVM. Although the R2 and RMSE error
of grey-box and black-box neural network methods are
similiar, a significant improvement in maximum prediction
error is achieved by using grey-box model. Using grey-
box techniques decreases maximum absolute error by 18%,
49%, 20%, and 40% for single and two layer ANN and
BNN, respectively.

According to the maximum R2 and minimum RMSE, the
grey-box support vector machine has the most accurate

prediction. Figs 7 (b) and (c) show experimental versus
prediction for both black-box and grey-box methods. BNN
methods (1-layer and 2-layers) and SVM method show a
similar performance, but the BNN required more training
time than SVM (Norouzi et al., 2020a), making SVM
preferable. However, the R2 and RMSE in Table 4 in-
dicate that the black-box BNN model attains almost the
same accuracy as the grey-box model. Single-layer BNN in
the black-box method model has the best accuracy among
other ML methods (high R2 and low RMSE in test). The
test R2 for 1-HL BNN black-box model is identical to
the relevant grey-box model. The grey-box 1-HL BNN has
higher RMSE, but it has a lower maximum prediction error
(0.6 mg/m3 higher). Fig 7 (d) shows experimental versus
prediction for 1-HL BNN with 31 neurons where maximum
prediction error is 2.9 mg/m3. Although the same grey-
box approach method shows better accuracy, it requires
significant effort to develop a physical-based model in GT-
power. In general, using grey-box techniques provides a
modest improvement of steady-state soot emission model-
ing accuracy which matches with literature (Mohammad
et al., 2021; Rezaei et al., 2020). One main advantages
of using grey-box modeling is the engine parameters can
be varied due to the physical basis of the engine model
for scenario testing. Whereas for black-box model, new
experimental data is needed to do scenario testing. This
is particularly relevant to transient emission testing, since
measurements are difficult to obtain but could be modeled
in the grey box model. The grey box modelling which
uses GT Power model is suitable for real time control due
to computational requirements. So, black box models are



suggested for real time control. For other purposes like
calibration, grey box modelling is a better option.

6. CONCLUSIONS

Grey-box, black-box and physical based emission modeling
techniques were used to develop soot emission models for a
diesel engine. Using only the physical model results in inac-
curate soot emission prediction, which justify using data-
driven methods. Experimental engine data was used for
black-box model training and to parameterize a physical-
based model which was used in a grey-box model. LASSO
and K-fold algorithms were used for feature selection and
hyperparameter tuning of black-box and grey-box meth-
ods to evaluate five different ML models; RT, ERT, SVM,
SNN, and BNN. These methods were applied to the black-
box and grey-box models. Grey-box SVM and 1 layer BNN
black-box methods showed the best performance with test
R2 errors equal to 0.95. Although the test R2 is the same
for both methods, the maximum test error and RSME are
lower for SVM grey-box method, so the grey-box SVM is
determined to be the best model for soot emission predic-
tion in this study. This conclusion is dependent on data-set
collected. Adding the physical model is advantageous on
modeling in reducing maximum test data variance. Grey-
box transient emission modeling is planned for the future
work.
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