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Abstract

A grey-box machine learning based model of an electrochemical O2-NOx sensor is developed using the physical

understanding of the sensor working principles and a state-of-the-art machine learning technique: Support Vector

Machine (SVM). The model is used to predict the sensor response at a wide range of sensor operating conditions

in the presence of different concentrations of NOx and ammonia. To prepare a comprehensive training and test data

set, the production sensor is first mounted on the exhaust system of a spark ignition, a diesel engine, and then on a

fully controlled sensor test rig. The sensor is not modified, rather the sensor working temperature, all of the sensor

cell potentials, and the pumping current of the O2 sensing cell are the model inputs that can be varied while the

pumping current of the NOx sensing cell is considered as the model output. A 9-feature low order model (LOM) and

a 45-feature high order model (HOM) are developed with linear and Gaussian kernels. The model performance and

generalizability are then verified by conducting input-output trend analysis. The LOM with Gaussian kernel and the

HOM with linear kernel have shown the highest accuracy and the best response trend prediction.
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1. Introduction

Electrochemical gas sensors are ideal for measuring emissions of combustion systems due to their small size,

fast response, and long life span [1–5]. Amperometric NOx sensors are widely used in commercial combustion

engines to meet the stringent emission regulations [6–9]. Amperometric NOx sensors simultaneously measure the

O2 and NOx concentration in the exhaust gas [10, 11]. Urea-based selective catalytic reduction (SCR) is an effective

technique to minimize diesel engine NOx emissions to satisfy current and upcoming stringent emission regulations

[12, 13]. Measuring the concentration of NOx emission upstream and downstream of the SCR system is essential for its

closed-loop control [14, 15]. However, the commercial electrochemical NOx sensors used in the automotive industry

are cross-sensitive to ammonia (NH3) [16, 17]. This cross sensitivity causes large deviations in the NOx sensor

reading from the actual NOx concentration [18]. Determining the actual NOx concentration has been a challenge for

controlling urea injection of SCR systems as the cross sensitivity of commercial NOx sensors to NH3, makes it difficult

to achieve maximum NOx conversion in SCR control. This can cause NH3 slip downstream of the SCR which not

only reduces the efficiency of an SCR system, but increases the hazardous NH3 emission in the exhaust gas [19, 20].

The cross-sensitivity factor of a NOx sensor to NH3 is taken as a constant [21, 22], a function of time [18] or a function

of ammonia concentration [23] but none of the these studies capture all the cross sensitivity factors of commercial

NOx sensors [16]. More accurate methods were developed to remove the cross sensitivity of NOx sensors to ammonia

by estimating ammonia slip downstream of the SCR [24–26]. However, all these methods require an SCR model

which increases the estimation uncertainty due to possible model errors. In addition, these cross sensitivity removal

methods are quite dependant on the SCR system. This means the sensor cross sensitivity estimation has to change

if the SCR system changes and estimation error increases as the SCR ages [27, 28]. In addition, all these studies

are carried out on a sensor operating at the normal design conditions i.e. typical sensor temperature, sensing cell

potentials, reference cell potentials etc. The effect of changed sensor operating parameters on sensor performance and

sensor cross sensitivity to other species particularly to NH3 has not been considered.

Developing a comprehensive NOx sensor model that includes all of the sensor operating conditions and is also

capable of predicting the sensor cross sensitivity to NH3 at a wide range of sensor inputs is the main objective of this

work. The motivation is that it is more cost effective to change the sensor operating conditions via control electronics

and use existing production sensors than to build a more complex sensor. Accurate physics-based models have been

developed to simulate the sensor performance by modeling diffusion of species over the sensor diffusion barriers and

the electrochemical reactions that take place over the sensing electrodes [29–31]. The physics-based understanding

provided by these studies has been used to also developed new fast response electrochemical sensors [32]. However,

to predict the sensor output variables over a wide range of operating conditions, a more complex model is required.
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Developing such a complex model also facilitates exploring the sensor operating conditions that lead to a lower sensor

cross sensitivity to other species. This model can also be used for future on-board diagnostics and for developing

complex emission reduction control strategies. To develop the more complex model, a machine learning approach is

combined with the physical understanding of the sensor working principles.

Machine learning is rapidly expanding to solve a wide range of engineering problems [33, 34]. Support Vector

Machine (SVM) is a machine learning approach which is capable of generating high-precision decision boundaries

based on a small subset of training data points with complex and non-linear relations [35, 36]. The use of machine

learning facilitates modeling systems with a complicated nonlinear input-output relation especially for a high number

of inputs [37]. This approach does not require a physical understanding of the system working principles and so is

called a data-driven or black-box model [38, 39]. Although, it can be accurately trained if sufficient training data is

available [40, 41], the main disadvantage of using data-driven black box models is the risk of overfitting since physical

understanding of the system is lacking [42]. To address this issue, a grey-box NOx sensor model is developed. A grey-

box model combines a machine learning-based model with physical understanding of the system to make sure the the

most appropriate features are used.

A grey-box SVM model of the sensor response at a wide range of operating conditions in the presence of different

concentrations of NOx and ammonia will be developed in this paper. To prepare a comprehensive training and test

data set the sensor is first mounted on the exhaust system of a spark ignition (SI) and diesel engine and then on a fully

controlled sensor test rig. The experimental points are used to train the model (89 %) and then the remaining points

(11 %) are used to validate the model performance and test the model accuracy. The grey-box model features are

selected using the physical understanding of the sensor working principles. The model performance is then verified

by using input-output trend analysis.

2. Experimental setup

2.1. Spark Ignition (SI) and Diesel engines

To study the sensor behavior to engine exhaust gas the sensor was mounted on a four cylinder Cummins QSB-4.5-

160 diesel engine and a four cylinder GM-Vortec-3000 spark ignition (SI) engine. The sensor was mounted to directly

measure the engine-out emissions. The engine operating condition has been changed to expose the sensor to a wide

range of concentration of species in the exhaust gas.

2.2. Gas mixture test rig

A fully-controlled sensor test rig was used to test the sensor at different concentrations and combinations of species

from gas cylinders filled to known concentrations of the desired species. The test rig consists of six fast response fully

controlled mass flow controllers (MKS-GE50A), six externally controlled 2-way valves, three 3-way valves, and four

humidifying tanks. All of the setup actuators are controlled externally by the test rig control computer [31].
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The sensor is tested at 126 different operating conditions exposed to different concentrations of species in the

engine exhaust gas and the sensor test rig throughout the operating range illustrated later in Table 1.

2.3. Solid state O2-NOx sensor

The sensor used in the experiments was a production Bosch sensors with ECM electronics [43]. The sensor is

calibrated and controlled using the corresponding control module (ECM-NOxCANt P/N: 02-07). The sensor control

module is connected to the electrochemical NOx sensor mounted on the engine exhaust pipe or on the sensor test

rig. The ECM sensor control module facilitates measuring the sensor output current, for O2 and NOx and controls all

the main sensor parameters such as the sensor temperature and the sensing cell voltages. The sensor and the control

module are shown in Figure 1.

Figure 1: ECM production NOx sensor and the corresponding control module

2.4. Fourier-Transform Infrared Spectroscopy (FTIR)

To measure the actual concentrations of all species in the gas stream, a MultiGas 2030 FTIR analyser was used.

To avoid exposing the FTIR to soot particles produced by the diesel and SI engines, the sample exhaust gas has passed

through two Heated Filters (Flexotherm). To minimize water vapor condensation in the sample gas, the sample lines

were heated to 191oC [44].

3. Grey-box SVM model

3.1. Support Vector Machine

Support Vector Machine (SVM) is one of the supervised machine learning methods which was introduced for a

classification problem in 1964 [45, 46]. Application of SVM in the regression or so-called Support Vector Regression

(SVR), was introduced by [47] in 1995. Generally, SVM is used for labeled data classification and function approx-

imation (regression) by generating a set of hyperplanes in an infinite-dimensional space [48]. In this paper, SVR is

4



used for function approximation to find a correlation between labeled data. For a given learning data, {ui, zi}, where

ui is feature set and zi is target output, SVR generates a function y(ui) which is as smooth as possible and it is able

to approximate training data in the maximum error of |ε|. In this case, y(ui) is a model to predict steady-state values.

The approximate function for a given data set can be defined as

y(ui) = wT ui + b (1)

where w and b are found by solving the SVR algorithm [47]. The smoothness of approximated function is achieved

by minimizing the second norm of w. Thus, a convex optimization problem is defined as

Minimize:
1
2
||w||22

Subject to:


zi − wT ui − b ≤ ε

wT ui + b − zi ≤ −ε

i = 1, ..., n
(2)

If such a function, y(ui), which approximates all pairs of labeled learning data within a defined ε margin (−ε ≤ zi−yi ≤

ε), and is as smooth as possible, is found by solving Eq. (1), the convex optimization problem is feasible. Otherwise,

the convex optimization problem of Eq. (1) is infeasible.

Slack variables (ζ−i , ζ
+
i ) are added as a penalty variable which regulates error tolerate of optimization as

− ε − ζ−i ≤ zi − yi ≤ ε + ζ+
i (3)

To overcome convex optimization problem infeasibility, the Soft Margin Loss Function (SMLF) with definition of

slack variables (ζ−i , ζ
+
i ) is used as [47]

Lε(zi, yi) =


0 |zi − yi| ≤ ε

|zi − yi| − ε otherwise
(4)

The SMLF is equal to summation of slack variables as [47]

Lε(ζ−i , ζ
+
i ) = ζ−i + ζ+

i (5)

The SMLF with slacks variables is shown schematically in Figure. 2. Therefore, the convex problem is now defined

to optimize smoothness of approximate function and minimize the SMLF, and associated constraint as [50]:

Minimize:
1
2
||w||22 + C

n∑
i=1

(ζ+
i + ζ−i )

Subject to:


zi − wT ui − b ≤ ε + ζ+

i

wT ui + b − zi ≤ −ε + ζ−i

ζ−i , ζ
+
i ≤ 0

i = 1, ..., n

(6)
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Figure 2: SVM regression and support vectors, and the soft margin loss function for a linear SVM (based on [49])

where C is a positive parameter which is used to adjust trade-off between model tolerated error and model smooth-

ness. To solve the convex problem, the Lagrangian function (primal objective function) is calculated as [50]

L =
1
2
||w||22 + C

N∑
i=1

(
ζ−i + ζ+

i
)

−

N∑
i=1

α+
i (−zi + yi + ε + ζ+

i ) −
N∑

i=1

µ+
i ζ

+
i

−

N∑
i=1

α−i (zi − yi + ε + ζ−i ) −
N∑

i=1

µ−i ζ
−
i

(7)

where α+
i , α−i , µ+

i , and µ−i are Lagrangian multipliers [50]. The optimization problem is solved by calculating the

partial differential of Lagrangian function with respect to the primal variables equal as [50]

∂L
∂w

= 0 → w =

N∑
i=1

(α+
i − α

−
i )ui (8a)

∂L
∂b

= 0 →
N∑

i=1

(α+
i − α

−
i ) = 0 (8b)

∂L
∂ζ+

i
= 0 → α+

i + µ+
i = C (8c)

∂L
∂ζ−i

= 0 → α−i + µ−i = C (8d)

Eq. 8b is called support vector expansion. Substituting Eq. (8) into Eq. (7) generates the dual optimization problem as:

6



Minimize: L =
1
2

N∑
i=1

N∑
j=1

(α+
i − α

−
i )(α+

j − α
−
j )ui

T uj

+

N∑
i=1

(α+
i − α

−
i )zi − ε

N∑
i=1

(α+
i + α−i )

Subject to:



∑N
i=1(α+

i − α
−
i ) = 0

0 ≤ α+
i ≤ C

0 ≤ α−i ≤ C

(9)

A standard Quadratic programming form (QP) is obtained by rewriting Eq. (9) as [51]:

Minimize:
1
2
αTHα + f Tα

Subject to: Aeqα = Beq

(10)

where

α =

 α+

α−

 , H =

 H −H

−H H

 , f =

 −zi + ε

zi + ε

 ,
H =

[
ui

T uj
]
, Aeq = [1...1 − 1... − 1] , Beq = [0]

(11)

Now, α is found by solving Eq. (11) and then substituting α into Eq. (8a), w is obtained. To find b in Eq. 1, Karush-

Kuhn-Tucker (KKT) conditions [52, 53] is applied to dual optimization problem. Based on KKT conditions, the

following equations must be fulfilled at the optimum point

α+
i (−zi + yi + ε + ζ+

i ) = 0 (12a)

α−i (zi − yi + ε + ζ−i ) = 0 (12b)

µ+
i ζ

+
i = (C − α+

i )ζ+
i (12c)

µ−i ζ
−
i = (C − α−i )ζ−i (12d)

Based on our optimization problem constraints, Eq. (12) is reduced to:

α+
i = α−i = 0 (13a)

0 < α+
i < C, α−i = 0 (13b)

0 < α−i < C, α+
i = 0 (13c)

α+
i = C, α−i = 0 (13d)

α−i = C, α+
i = 0 (13e)

If the Eqs. (13b) and (13c) are fulfilled, the exact value of |zi − yi| = ε will be obtained and the set of data which the

error between prediction and actual equals to ε, can be calculated as

S = { i | 0 < α+
i + α+

i < C} (14)
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where S is called support vectors index. As the support vector set zi = yi + sign(α+
i −α

−
i )ε is true, b can be calculated

as

b =
1
|S |

S∑
i∈S

(zi − wT ui − sign(α+
i − α

−
i )ε) (15)

3.2. Kernel Based SVM

To improve the performance of conventional SVM in providing distribution predictions an implicit feature space

is used instead of simply computing the inner product in Eq. (9), ui
T uj (a high-dimensional map). In this case the

optimization problem is to find the smoothest function in the feature space instead of the input space [50]. The

nonlinear kernel in Eq. (9) is now used by mapping the training pattern into the feature space instead of using the term

ui
T uj. The difference between non-linear SVM and linear SVM is that for non-linear SVM, a low-dimensional input

space with a high-dimensional feature space is used, while for a linear SVM a high-dimensional linear input space is

used [54]. Thus, the kernel is defined as K(ui,uj), and used instead of ui
T uj in the Eq. (9). Therefore, in Eq. (11), H

is changed to H =
[
K(ui,uj)

]
.

From Eq. (8a), w is calculated as w =
∑N

i=1(α+
i − α

−
i )ui, which is linear combination of training data. Substituting

Eq. (8a) into Eq. (1) and using kernel function instead of inner product (K(ui,uj) instead of uiu), the approximate

function is calculated as

y =

n∑
i=1

(α+
i − α

−
i )K(ui,u) + b (16)

as a special case, if radial basis function (RBF) kernel is used in kernel based SVM, it can be represent as Radial

Basis Function Network (RBFN) which schematically shown in Figure. 3. The RBF kernel function is defined as

K(ui,uj) = exp
( ||ui − uj||

2
2

2σ2

)
(17)

where σ is free variables act like Gaussian variance in probability density function of a normally distributed random

variable and ||.||2 is the Euclidean norm.

3.3. Physics-based feature selection

To capture the effect of sensor operating conditions on the sensor response and sensor cross sensitivity to ammonia,

it is crucial to test the sensor at a wide range of operating conditions. Selecting appropriate features - that are based on

the physical understanding of the sensor working principles - are essential for the SVM model. Physics-based models

of an electrochemical NOx sensor were previously developed in [29] and [31] and the physical insights provided by

these references are used here as a guideline to select the physics-based features of the grey-box model. Employing

physics-based features in any data-driven model potentially reduces the number of independent model features and

also reduces the risk of model over-fitting [55]. To develop the grey-box model, the model features are selected based

on the procedure described next.
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Figure 3: Radial Basis Function Network (RBFN) representation of kernel based SVR

3.3.1. NOx concentration

An amperometric NOx sensor typically operates at diffusion rate determining condition, where the electrochemical

reactions are fast enough that the pumping current of the NOx sensing cell sensor only depends on the diffusion rate

of species through the sensor diffusion barrier [29, 56] as schematically shown in Figure 4.

Figure 4: Amperometric NOx sensor working principle: Diffusion of species through the sensor diffusion barriers into the sensing chambers [57]

For the diffusion-rate-determining operating condition, the sensor response linearly changes with NOx concentra-

tion according to Fick’s law [29]:

Ip2 = 2F × NNO,sc (18)

where, NNO,sc[ mol
s ] is the diffusive molar flow of NO through the second diffusion barrier into the second chamber.

When the sensor operating parameters change so that the sensor operates outside the diffusion rate determining

condition, then the relation between the NOx concentration and sensor output follows the non-linear equation [31]:

iP2 = ioP2

( xNO,sc

xo
NO,sc

)γ[
exp

(
αa2F
R̄T

ηac

)
− exp

(
−αc2F

R̄T
ηac

)]
(19)
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where, αc2 and αa2 are the charge transfer coefficient of cathode and anode respectively, while ioP2, iP2, xo
NO,sc, and

xNO,sc are the reference exchange current density; the NOx sensing cell current density; the reference mole fraction

of NO in the second chamber; and mole fraction of NO in the second chamber. The overpotential ηac is calculated

from ηac = VP2 − EOC2, where EOC2 and VP2 are the open circuit (zero-current) potential and the potential of the

NOx sensing cell. The NOx concentration ratio is to the power of γ which represents the effect of concentration losses

on the sensing cell current.

Although the sensor typically works at diffusion rate determining operating condition, to include the whole range

of sensor operation, NOx concentration and (NOx concentration)γ are considered as features of the SVM. The value

of γ is found to be equal to 0.1 for an amperometric NOx sensor [31].

3.3.2. NH3 concentration

The typical operating temperature of the electrochemical NOx sensors is high enough to cause undesired oxidation

of NH3 inside the O2 sensing chamber [16]. This oxidation produces an additional NOx inside the sensor and therefore

affects the pumping current of the NOx sensing cell. Therefore, the same features that are allocated for NOx should

be considered for NH3 (NH3 concentration and (NH3 concentration)γ ). To reduce the risk of overfitting, only the

dominant feature, (NH3 concentration), is included in the main SVM features.

3.3.3. Sensor temperature

The sensor temperature has a complex effect on the NOx sensor output. The multi-component molecular diffusion

mechanism is found to be the dominant diffusion mechanism of species through the sensor diffusion barriers [29].

According to the molecular diffusion mechanism, the diffusion coefficient, Dn, increases with the sensor temperature

as [30]:

Dn ∝ T 1.75 (20)

Assuming that the sensor output current is limited by the diffusion rate, in the absence of any other electrochemical

reactions, the sensor output, IP, changes with temperature as [30]:

IP ∝ T 0.75 (21)

However, it is also shown in [31] that the NOx species (NO2 and NO) are completely or partly reduced in the first

chamber before they reach to the NOx sensing chamber. In the first chamber, NO is reduced through the following

reactions [31]:
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Cathode : NO f c + 2e− →
1
2

N2 + O2− (22a)

Anode : O2− +
1
2

N2 → NOenv + 2e− (22b)

Overall : NO f c → NOenv (22c)

where NOenv is the NO molecule in the sample gas and NO f c is the NO molecule inside the first chamber.

The relation between of NO reduction and the first chamber cell voltage (VP1) can be expressed by:

VP1 = Eo
f c +

∆S ox−red, f c

2F
(T − To) −

R̄T
2F

ln
( pNOenv

pNO f c

)
︸                                                   ︷︷                                                   ︸

EN

−ηa (23)

where, pNO f c and pNOenv are the partial pressure of NO in the first chamber and in the sample gas respectively and ηa

is the activation overpotential which will be explained later. Here, Eo
f c and ∆S ox−red,sc are both equal to zero [31].

Using Dalton’s law of partial pressures [58], Eq.(23) is written in terms of molar fraction of species as:

VP1 = Eo
f c +

∆S ox−red, f c

2F
(T − To) −

R̄T
2F

ln
( xNO,env

xNO, f c

)
︸                                                     ︷︷                                                     ︸

EN

−ηa (24)

where, xNO,env and xNO, f c are the molar fraction of NO in the sample gas and in the first chamber respectively.

The first chamber cell potential is typically kept at high values (>0.42 V). Therefore, the activation is calculated

using a Tafel approximation which is valid at high cell voltages [59]:

ηa =
R̄T
α1F

ln
( iP1,NO

ioP1

)
(25)

where, iP1,NO and ioP1 are the current density and the exchange current density of the first cell respectively and α1

is the charge transfer coefficient of the first cell.

According to Eq. (24), for a constant cell potential, as the temperature increases, molar fraction of NO in the

first chamber decreases. Reducing the molar fraction of NO in the first chamber, reduces the pumping current of the

NOx sensing cell according to the Fick’s law [29]:

IP2 ∝
(
xNO, f c − xNO,sc

)
(26)

Therefore, to include the effect of temperature on diffusion and the electrochemical reaction rates, features T 0.75

and exp( 1
T ) are included in the grey-box model based on Eqs (21) and (24) respectively.
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3.3.4. NOx sensing cell potential (Vp2)

The effect of NOx sensing cell potential is comprehensively studied in [31] using a physics-based approach.

VP2 = Eo
sc +

∆S ox−red,sc

2F
(T − To) −

R̄T
2F

ln
( x0.5

O2,rcx0.5
N2,rc

xNO,sc

)
︸                                                         ︷︷                                                         ︸

EN

−ηΩ − ηac (27)

Here, this physical understanding is used to select a physics-based feature for the grey-box model that reflects the

effect of NOx sensing cell potential, Vp2, on the NOx sensing cell current. The effect of NOx sensing cell potential on

sensor output is schematically shown in Figure 5. Regions I to VI shown in Figure 5 are oxidation, activation, ohmic,

ohmic-diffusion transition, diffusion-rate-determining and electrolyte reduction operating regions respectively [31].

Figure 5: Typical electrode current vs potential relation at a constant NOx concentration. Adapted from [31]

The full reduction operating range (regions II to V in Figure 5) is to be covered by the grey-box model. The

following function is proposed and used to capture the affect of Vp2 on Ip2 over the whole reduction operating range:

Ip2 = tanh
(
aVP2 + b

)
+ c (28)

where parameters a,b and c can be found based on the experimental data over the full range of Vp2 when all

other inputs are kept constant. The fitted values are found to be equal to 8.651, -0.2393 and 0.1595 for a, b and c

respectively.

3.3.5. First sensing cell potential (Vp1) and the reference cell potential (VS)

The reference cell potential, VS , represents the partial pressure (and therefore molar fraction) of O2 inside the

O2 sensing chamber [31]. A closed loop controller keeps VS at the desired value by adjusting the O2 sensing cell

potential, Vp1. Unlike NOx reduction in the NOx sensing chamber, NOx is always partially reduced in the O2 sensing
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chamber since the O2 sensing electrode is an Au-Pt electrode with a higher activation energy than the Pt electrode used

in the NOx sensing chamber. Therefore the molar fraction of NO in the first chamber is proportional to exponential

of VP1, according to Eq. (24). In addition, according to Eq. (26), the NOx sensing pumping current is proportional to

the molar fraction of NO in the first sensing chamber. Therefore, both exp(VS ) and exp(Vp1) terms are considered as

the features of the grey-box model.

3.3.6. First sensing cell current (Ip1)

The last important sensor operating parameter that must be included in the sensor model is the pumping cur-

rent of the O2 sensing cell (Ip1) which represents O2 concentration in the sample gas stream. Although the O2 and

NOx pumping currents are not supposed to affect each other so that the sensor can measure both O2 and NOx concen-

tration independently, this small effect still needs to be considered in the sensor model particularly when the sensor is

operating away from diffusion-rate-determining condition. To consider this effect, feature Ip1 is also included in the

model.

4. Results and discussions

4.1. Training and test data

To provide a sufficient number of training and test data points for the model, the sensor is tested at 126 different

operating conditions and the results were used to train and test the svm-based sensor model. Out of 126 data points,

112 points were used as training data and 14 points were used as the test data. To provide a better insight into the raw

data used for model training and test, the range of all the main sensor input variables are listed in Table 1.

Table 1: The range of sensor operating condition used for model training and test (Total number of points: 126).

Variable Maximum Minimum Mean

Sensor Temperature [K] 971.1 1079.2 1021.3

Second Cell potential (VP2) [V] 0.272 0.450 0.417

Reference Cell potential (VS ) [V] 0.350 0.425 0.4212

First Cell potential (VP1) [V] 3.154 4.414 4.084

First Cell Current (IP1) [mA] -0.0523 2.543 1.117

Second Cell Current (IP2) [µA] 0.006 5.364 1.496

NOx concentration [ppm] 2778 0 603

NH3 concentration [ppm] 2000 0 249

4.2. Low Order SVM models

Two low order grey-box SVM models are developed using the physics-based features explained above and are

listed in Table 2. One low order model is developed using a linear kernel and the other model is developed using a
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Gaussian kernel as explained in section 3.2. The training and test results of the low order model with the linear and

Gaussian kernel are shown in Figures 6 and 7 respectively. As shown in these figures, the Gaussian kernel based

model has a significantly better performance on training and test data. The correlation coefficient (R2) for LOM test

and training are 0.875 and 0.970 for the linear kernel, while for the Gaussian kernel R2 is equal to 0.999 and 0.921 for

training and test data respectively.

Table 2: Features of the Low Order grey-box SVM

U1 = xNOx, env U6 = exp
(
Vp1

)
U2 =

(
xNOx,env

)0.1
U7 = Ip1

U3 =
(
Tsen

)0.75
U8 = exp

(
VS

)
U4 = exp

(
Tsen

)
U9 = xNH3, env

U5 = tanh
(
8.651(Vp2 − 0.2393)

)
+ 0.1595
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Figure 6: Low order model with linear kernel. Training R2=0.875. Test R2=0.970.

4.3. High Order Models (HOM) SVM

To include the interactions between the features in the model and to improve the accuracy of the SVM training,

the features of the low order model and their second order interactions are considered as the features of the high order

model (HOM). Therefore, a 45-feature SVM model is obtained using all 9 grey-box features and all their second order

interactions. Similar to the LOM, a linear and a Gaussian kernel were used to develop two high order SVM models.
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Figure 7: Low order model with Gaussian kernel. Training R2=0.999. Test R2=0.921.

The results of the HOM SVMs with linear and Gaussian kernels are shown in Figures 8 and 9 respectively. As

shown in Figures 8 and 9, the accuracy of the SVM model significantly increases by increasing the number of features

from 9 (LOM) to 45 (HOM) although a higher order is associated with a higher computational cost. In addition,

similar to the LOM, the Gaussian kernel provides a better training and test performance compared to the linear kernel.

The correlation coefficient (R2) for HOM test and training are 0.984 and 0.986 for the linear kernel, while for the

Gaussian kernel R2 is equal to 0.999 and 0.993 for training and test respectively.
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Figure 8: High order model with linear kernel. Training R2=0.984. Test R2=0.986.
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Figure 9: High order model (HOM) with Gaussian kernel. Training R2=0.999. Test R2=0.993

4.4. Trend Validation

One main concern with all types of data-driven models is the risk of overfitting the model, particularly when

high number of features are included in the model. Allocating sufficient number of training and test data points

can reduce the risk of overfitting by monitoring the model prediction performance for both the training and test

data. To further investigate the model performance, its capability in correctly predicting the input-output relation

without overfitting is evaluated by studying the effects of kernel type and model order on the input-output relation.

To do so, the individual effect of NOx and NH3 concentration on the sensor output (IP2) is calculated and shown in

Figures 10 and 11 respectively. The effect of NOx and NH3 concentration on the sensor output (IP2) is studied at

typical potentials of the second and the reference cell of the sensor (VP2= 0.44,VS =0.423 V) which means that the

sensor is in diffusion-rate-determining operation [31]. This means that the sensing current IP2 should linearly change

with NOx and NH3 concentration at this operating range. The model behavior is tested for both LOM and HOM with

linear and Gaussian kernels and the models and performance are summarized in Table 3.

All but one of the models show an acceptably linear sensing current prediction. The HOM with Gaussian kernel

has the highest order of magnitude RMS with respect to the linear response of IP2 as shown in Table 3. This means that

although the HOM with Gaussian kernel has the best training performance amongst all the models, it is not capable of

properly predicting the sensor output trend as it is overfitting the training data. Therefore, if we consider the training

performance, the test performance and the output trend prediction, the LOM with Gaussian kernel and the HOM with

linear kernel are the most appropriate models.
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Figure 10: IP2 vs NOx and NH3 prediction for the Low Order Model with linear and Gaussian kernels
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Figure 11: IP2 vs NOx and NH3 prediction for the High Order Model with linear and Gaussian kernels

Table 3: Summary of LOM and HOM performance for training, test and trend analysis

Model Type Number of the features R2 training R2 test NOx trend RMS NH3 trend RMS

Linear LOM 9 0.970 0.875 4.3571 × 10−4 2.5867 × 10−16

Kernel-based LOM 9 0.999 0.921 0.0043 0.0209

Linear HOM 45 0.985 0.984 0.003 1.0731 × 10−15

Kernel-based HOM 45 0.999 0.993 0.0283 0.0439

As illustrated in Figures 10 and 11, the grey-box model is able to predict the effect of NOx and NH3 concentration

on the sensor output. This provides a powerful tool to study the cross sensitivity of amperometric NOx sensors to

NH3 which is essential for the automotive applications [16, 23]. This model can also predict the sensor output when
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the sensor is simultaneously exposed to NOx and NH3.

The developed grey-box model can also be used for fault detection of production sensors. This can be done using

sensor input perturbation technique which was originally presented in [30]. In this method, one of the sensor input

variables (e.g. temperature) is changed and the effect of this perturbation on the sensor output is measured. The same

sensor input perturbation is given to the model and the predicted output change is calculated and then compared with

the measured value. If the difference between the estimated and the measured values are higher than a predefined

value, it means the sensor is not working properly and must be changed. A simplified schematic of this strategy is

shown in Figure 12. The model accuracy should be taken into account to define eMAX in Figure 12. For instance,

for NOx concentration equal to 144 ppm, if sensor temperature, Tsen, and NOx sensing potential, VP2 simultaneously

change from 1009 K to 1025 K, and from 0.448V to 0.233V respectively resulted in .1911 change in IP2 in the

experiments while this change is predicted to be 0.1581 µA, and 0.2417 µA by the linear HOM and the Kernel-based

LOM respectively. Therefore if Tsen and VP2, are both considered as the perturbed inputs, eMAX must selected higher

than approximately 0.04 and 0.05 for the linear HOM and the Kernel-based LOM, respectively to exclude the model

error. In addition to the model-sensor mismatch, sensor aging can also increase the sensor and model deviation and

therefore this factor should also be considered in selecting the eMAX value to avoid undesired fault detection. Although

it is highly recommended that a sensor/model recalibration process be added to the fault detection algorithm similar

to the algorithm that was proposed in our previous work [30]. A more detailed study on this diagnostics technique

will be carried out in the future works.

Figure 12: An example for sensor diagnostics using the developed grey-box model: An input-perturbation-based sensor diagnostics strategy

Since the sensor model captures all the main factors which affect the sensor output, the sensor model can also be

used as an accurate input to the plant (engine, combustion chamber) for both simulation and real-time model based

observers and control. To use this sensor model, which is accurate in steady state, to simulate and control dynamic

systems, the dynamic behavior of the sensor must be considered. Adding a first order lag to the base steady state
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model produces accurate transient results for the cases tested [60].

5. Conclusions

A support vector machine (SVM) based grey-box model is developed to predict the sensing out put of an ampero-

metric O2-NOx sensor that is highly cross sensitive to ammonia. The model features are selected based on the physics

of the sensor working principles.

A 9-feature low order model (LOM) and a 45-feature high order model (HOM) were developed with linear and

Gaussian kernels to predict the sensor response at a wide range of sensor operating conditions in the presence of a

wide range of NOx and ammonia concentrations.

The experimental data from diesel and SI engine tests as well as the tests carried out on a fully controlled sensor

test rig running at constant operating condition were used to train and test the LOM and HOM machine learning based

models. Changing the operating conditions of the sensor using the electronics, combined with a detailed understanding

of the sensor, enables more functionality from the sensor without having to change the actual production sensor.

The sensor working temperature, all of the sensor cell potentials, and the pumping current of the O2 sensing cell

are used as the main model inputs while the pumping current of the NOx sensing cell is considered as the model output.

The model performance and generalizability are then verified by conducting input-output trend analysis. The LOM

with Gaussian kernel and the HOM with linear kernel has shown the highest accuracy and the best generalizability.

The results also revealed that:

• The correlation coefficient (R2) for LOM test and training are 0.875 and 0.970 for the linear kernel, while for

the Gaussian kernel R2 is equal to 0.999 and 0.921 for training and test respectively.

• The correlation coefficient (R2) for the HOM test and training are 0.984 and 0.986 for the linear kernel, while

for the Gaussian kernel R2 is equal to 0.999 and 0.993 for training and test respectively.

• Considering the training performance, the test performance and the output trend prediction, the LOM with

Gaussian kernel and the HOM with linear kernel are the most appropriate models.

The developed model can be used for on-board diagnostics and future control strategies development by consid-

ering the effect of sensor inputs and operating conditions such as sensor temperature, the sensing cell potentials and

the reference cell potential on the sensor performance.
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