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Abstract
A correlation based Model Order Reduction (MOR) algorithm is developed using Support Vector Machine (SVM) to
model NOx emission and Break Mean Effective Pressure (BMEP) of a medium-duty diesel engine. The SVM-based
MOR algorithm is used to reduce the number of features of a 34-feature Full-Order Model (FOM) by evaluating the
regression performance of the SVM-based model. Then, the SVM-based MOR algorithm is used to reduce the number
of features of the FOM. Two models for NOx emission and BMEP are developed via MOR, one complex model with
high-accuracy, called High-Order Model (HOM), and the other with an acceptable accuracy and a simple structure,
called Low-Order Model (LOM). The HOM has 29 features for NOx and 20 features for BMEP, while the LOM has
9 features for NOx and 6 features for BMEP. Then, the steady-state LOM and HOM are implemented in a Nonlinear
Control-Oriented Model (NCOM). To verify the accuracy of NCOM, a fast response electrochemical NOx sensor is
used to experimentally study the engine transient NOx emissions. The HOM and LOM SVM models of NOx and
BMEP are compared to a conventional Artificial Neural Network (ANN) with one hidden layer. The results illustrate that
the developed SVM model has shorter training times (5 to 14 times faster) and higher accuracy especially for test data
compared to the ANN model. A control-oriented model (COM) is then developed to predict the dynamic behavior of the
system. Finally, the performance of the LOM and HOM are evaluated for different raising and falling input transients
at four different engine speeds. The transient test results validate the high accuracy of the HOM and the acceptable
accuracy of LOM for both NOx and BMEP. The HOM is proposed as an accurate virtual plant while the LOM is suitable
for model-based controller design.
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Introduction

Diesel engine NOx emission

The long lifespan, high efficiency, fuel economy
advantages and the wide range of operating conditions
have made Direct Injection (DI) Diesel engines interesting
for both stationary power generation and the transportation
industry1,2. The high combustion temperature and the lean
air-fuel mixture of Diesel engines lead to a relatively
high NOx emission. Reducing diesel engine NOx and
particulate matters (PM) emission to meet the stringent
emission regulations has always been a challenge for the
automotive industry as typically reducing one of them results
in increasing the other one3,4. This is mainly due to the
inverse effect of in-cylinder peak temperature and air fuel
ratio on NOx and PM5–7. Therefore, to develop an effective
and practical NOx control strategy, all other gaseous and PM
emissions should also be considered.

The NOx components of diesel engine exhaust gas
typically contains approximately 1/7 to 1/3 NO2/NO
fraction8 while NO2/NO ratio increases after the Diesel
Oxidation Catalyst (DOC) to approximately one9. Different
methods have been used by the automotive industry to
reduce diesel engine NOx emission including Exhaust

Gas Recirculation (EGR)10, Low Temperature Combustion
(LTC)11,12 and most effectively, urea-based Selective
Catalytic Reduction (SCR)13–15. Although all these methods
can help reducing the engine tailpipe NOx emissions, it
has become more difficult to keep pace with increasingly
stringent emission regulations by only using the conventional
NOx reduction approaches16,17. To address this issue,
more complex engine control strategies and after treatment
systems are needed18–20. This requires a complex and
flexible engine dynamic model that captures the nonlinear
relation between engine operating parameters, engine
performance and engine emissions.

Use of machine learning for modelling internal
combustion engines

Data-driven models have become of especial interest
to many of the researchers in the last two decades
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as an efficient way to predict, optimize or diagnose
the performance of internal combustion engines (ICEs)
mostly using Artificial Neural Network (ANN)21–23.Machine
learning is increasingly used for ICEs optimization and
calibration. Machine learning methods, along with the
state-of-the-art optimization algorithms such as Genetic
Algorithm (ML-GGA) were also used for ICE optimization.
For instance, a ML-GGA algorithm was used for optimizing
the operating conditions of a heavy-duty engine, and the
results showed an improved performance compared to
Computational fluid dynamics (CFD) based methods24,25.
Ensemble methods, using multiple learning algorithms to
obtain a more accurate prediction performance, were also
used for ICEs. A novel active learning method, Active-O,
was developed for ICE optimization and and has shown a
better performance compared with the GA, micro GA, and
particle swarm optimization (PSO)26.

Support Vector Machine (SVM) is another popular data-
driven method that is now being increasingly used for
modeling internal combustion engines mostly for steady-
state prediction of engine performance or emissions. SVM is
a machine learning technique which is capable of modeling
complex and non-linear input-output relations based on
a sufficiently large training data set27–29. This approach
provides a black box model without directly involving
physical understanding of the system but can be accurately
trained if the model features are selected appropriately30–34.
The simple structure of SVM, especially by using linear
kernel SVM when compared to ANN, allows for improved
learning performance which, when combined with the rapid
in-cycle Field Programmable Gate Arrays (FPGAs) based
calculations, could allow for online learning of in-cycle
combustion metrics35,36.

A NOx prediction model was developed for a hydrogen-
enriched compressed natural gas engine using an optimal
SVM method where particle swarm optimization (PSO)
was used to find the regulatory parameters of SVM37.
Also, the effect of SVM model parameters such as penalty
factor kernel, insensitive band loss function, and the training
sample size was studied in37. An optimal SVM for diesel
engine NOx prediction was developed by Liu et al38, where
the Genetic Algorithm (GA) was used to find a regulatory
parameter of SVM. Principal Component Analysis (PCA)
was used for dimension reduction and less than 5% of
information was lost during the data extrusion process38.

An ANN and an SVM model are developed by Niu et al39

to predict the performance and emission of a marine diesel
engine. The developed ANN and SVM were compared and
is was shown that for a limited number of experimental data,
SVM has a better performance in finding the global optimum
solution compared to the ANN39. The prediction of a spark-
ignition engine fueled with butanol-gasoline blends was
developed using SVM, and the high performance of the SVM
method to predict engine parameters was illustrated in40.
Predicting NOx emission using SVM method is not limited
to internal combustion engines. SVM has also been used
to predict NOx emissions of gas turbines41 and coal-fired
utility boilers42. The Least-Square type SVM (LS-SVM) has
also been used for NOx emission prediction43–45. In the
LS version of SVM, a set of linear optimization methods
is solved instead of a quadratic optimization problem.

Also, instead of including inequality constraints, equality
constraints are considered in the optimization problems of
LS-SVMs46.

Model order reduction (MOR) and Feature
Selection (FS)

The main disadvantage of using such a black-box model
is the risk of overfitting the model, particularly when a
large number of features are used47. To address this issue,
different methods have been used to reduce the number of
negligible features through Model Order Reduction (MOR),
also called Feature Selection (FS). The MOR and FS
use the same concept to select more significant features;
however, different approaches are developed to enhance their
performance. In FS, the more significant features with a high
score of a so called merit function are selected. Similarly,
in MOR, the less significant features are removed based on
a pre-defined criteria. Typical feature selection steps are: 1)
calculating the overall effects of features on the target and
considering it as a score, 2) selecting the feature with the
largest score and adding it to the set of the selected features,
3) recalculating the score, 4) repeat 2 and 3 until certain
number of features are selected48.

Different methods have been developed for FS prob-
lem such as minimum-redundancy-maximum-relevance
(mRMR)49, conditional mutual information50, joint mutual
information51, and correlation feature selection52. In a
correlation-based feature selection approach, typically, a
merit function is defined based on the features-output cor-
relation, and a criteria for feature selection is defined to
maximize the merit function. By maximizing the merit
function, the feature with a high score (high value of merit
function) is selected as a feature52. A feature selection for the
SVM algorithm in time series forecasting was proposed in53,
where hyperparameters were optimized based on the Genetic
Algorithm (GA). Then, by defining a scaling factor for
system features, the features with smaller scaling factor were
removed. In other words, as the features with small scaling
factors have less information about the system, they can be
removed without any significant accuracy loss53. An SVM-
based feature selection method was proposed for electric
load forecasting in54 where the mean absolute percentage
error (MAPE) was used for the algorithm stoppage criteria54.

Similarly, the MOR technique is used for dimensionality
reduction but from a slightly different perspective. The
difference between MOR and FS techniques is that in MOR
techniques, new features are created based on the original
features but in a lower dimension set of information with
a small (but acceptable) loss of the total information. In
other words, the MOR techniques are equivalent to so called
feature extraction methods55. The principal component
analysis (PCA) is one of most well-known feature extraction
algorithms in which the co-variance matrix and its
eigenvalues and eigenvectors are used to find the “principal
components.” In this method, only the projection of data into
principal component will be considered as a new data set
(lower than raw data set)55,56. Generally, MOR approaches
can be classified into three main groups. The first MOR
approach uses frequency domain. Some of the methods used
in this approach are eigenmode analysis, moment matching
category, singular value decomposition (SVD), proper
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orthogonal decomposition (POD), balanced truncation, and
Hankel approximation57. The other popular MOR class
includes time-domain approaches, such as Chebyshev and
Wavelet58,59. Also, different Machine Learning Techniques
were used for MOR, including Neural Network, Genetic
Algorithm, Fuzzy Logic, Particle swarm optimization (PSO),
simulated annealing, and Ant-Colony57,60,61.

A wide range of methods have been used in the literature
for feature selection; however, SVM-based model order
reduction or feature selection has rarely been studied. In
general, the SVM algorithm for regression is an optimization
problem that finds a model for a given data set by solving a
trade-off optimization problem between model smoothness
and tolerated outlier data62. By adjusting the regulatory
parameter of this trade-off, model features containing less
information compared to the other features can be removed.
Hence, the SVM regulatory parameter for smoothness and
tolerated error can be used to develop a MOR algorithm.

Motivation and objectives
Several phenomenological and physical control-oriented

models of diesel engine performance and emission have been
developed for feedback control of emissions63–65. Physical
and chemical sub-models such as a spray model, mixture
formation, ignition delay, combustion characteristics and
emission formation can be included in a physics based
model providing insight into the combustion phenomena that
affects gaseous and particulate emissions. However, despite
the ongoing advancements in the physics based combustion
and emission models, they can not capture all the complex
phenomena that take place inside the combustion chamber to
exactly predict the emission levels. In addition, developing
such models requires high effort and computing power.
This makes complex physics-based models less desirable or
unsuitable for real time applications66.

While the physics-based combustion and emission model-
ing approach provides physical insight, an accurate detailed
3D combustion simulation model is too computationally
expensive for model-based calibration. Using simpler types
of physics based models can result in lower emission pre-
diction accuracy66,67. Machine Learning based model that
is trained with appropriate data and sufficiently large data
size, can provide an accurate, flexible and fast data-driven
prediction68. These data-driven models are typically faster
than physics based approaches and can be easily trained
using experimental data66. Developing machine learning
based engine models also requires a deep understanding of
the system and the modeling approach. Most of the state-
of-the-art machine learning techniques have a large number
of design parameters such as the model features, kernel
types, and the values of hyperparameters. All of these design
parameters must be thoroughly examined to optimize the
performance of the model for engine applications. This
paper, provides comprehensive examination of the design
parameters of a SVM model to be used for internal combus-
tion engine emissions and performance prediction.

Studies carried out in the literature have shown that SVM
is a promising method for engine emission and performance
prediction due to its high capability of converging to global
optimums with relatively smaller size of training data-
sets compared to other data-driven approaches used for

internal combustion engines. First, most of the data-driven
models developed for internal combustion engines have used
non-linear kernels without exclusively investigating feature
interactions. Second, none of these models propose a control-
oriented model to be used for engine control or observer
design. In addition, use of a correlation-based feature
selection technique provides more insight into selecting the
most important features without manipulating any of the
primary features or their interactions.
To improve the performance of an engine control strategy
using emission feedback in the controller is used. Due
to the advancements in the sensor industry, fast response
production electrochemical NOx sensors can now provide
accurate input for engine feedback control. Therefore,
developing accurate control-oriented model (COM) and
virtual plant (VP) to be used as a model observer is essential.
An accurate COM of the engine that includes emissions
can be used to design a model-based controller or model-
based observer. A model-based observer design can play an
essential role in engine feedback control systems, especially
to detect any fault or malfunction in the emission sensors69.
A full-order model (FOM) SVM is first developed to predict
engine NOx emission and brake mean effective pressure
(BMEP) at steady-state conditions. The steady-state model
is trained using a sufficiently large number of engine data
points and then validated at different engine test points.
To minimize the risk of overfitting the model, a new
correlation-based feature selection approach is proposed and
used to reduce the order of the FOM. Next, two high
order models and two low order models were derived for
NOx and BMEP using the proposed model order reduction
approach and the results are compared with a two-layer
Artificial Neural Network (ANN) model (one hidden layer
and one output layer). Finally, a control-oriented model
was developed by adding a first-order lag that represents
the system dynamics for BMEP and NOx. The results
show that the high order and low order control-oriented
models were both capable of accurately tracking the transient
NOx emission and engine BMEP at different engine speeds
and loads for experimental data that was not used to develop
the model.
This paper is organized in sections. The “Experimental
Setup” section provides information about experimental
setup, data collection, and collected data map. The
section “Support Vector Machine” presents background
information about SVM and problem formulating. In
the section “Full-order Model (FOM)” the full order
model for NOx and BMEP is developed. The “Model
Order Reduction (MOR)” section introduces a novel
correlation-based model order reduction algorithm and the
corresponding results for the MOR are provided for NOx and
BMEP. A detailed discussion about the different orders
of the models and comparisons between the developed
models and a conventional ANN model is provided. Section
“BMEP and NOx Non-linear Control Oriented Model”
presents a nonlinear control-oriented model along with the
dynamic model validation with experimental data. The main
conclusions of the paper are detailed in the “Conclusions”
section.
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Experimental Setup

Diesel Engine

A 4-cylinder medium duty diesel engine (Cummins
QSB4.5 160 - Tier 3/Stage IIIA) is used in this work. The
engine characteristics are listed in Table 1.

Table 1. Diesel engine characteristics 70

Parameter value
Engine type In-Line, 4-Cylinder
Displacement 4.5 L
Bore × Stroke 102 mm × 120 mm
Peak Torque 624 N.m @ 1500 rpm
Peak power 123kW @ 2000 rpm
Aspiration Turbocharged and Charge

Air Cooled
Certification Level Tier 3 / Stage IIIA

Figure 1. Experiment setup - Internal Combustion Engines

Electrochemical NOx sensor

A production amperometric NOx sensor (ECM-06-05)
was used in the experiments. All the sensor working
parameters were set using the sensor control module (ECM-
NOxCANt P/N: 02-07). The sensor control module was
connected to a computer via a CAN interface (Kvaser Light
HS) to monitor and log the measurements.

Fourier-Transform Infrared Spectroscopy (FTIR)

A FTIR analyser (MultiGas 2030) was used to validate
the ECM NOx sensor measurement and to measure the
concentration of other species in the exhaust gas. The
FTIR analyser was connected to the diesel engine exhaust
pipe, upstream of the catalysts to measure the engine raw
emissions. The sample exhaust gas passes through two
Heated Filters (Flexotherm Flex) connected with Heated
Sample Lines (Flexotherm) heated to 191oC to avoid water
vapor condensation in the sample gas as schematically shown
in Fig. 1. The engine operating conditions and corresponding
NOx concentrations are shown is Fig. 2

Figure 2. Experimental engine operating points used for model
training

Support Vector Machine

Convex Optimization Problem
Support Vector Machine (SVM), introduced by Vap-

nik71,72, is a supervised machine learning approach. SVM is
typically used for classification of labeled data by creating
a set of hyperplanes in an infinite-dimensional space73.
SVM is also used for regression and function approximation,
also called Support Vector Regression (SVR), which was
introduced by Vapnik74. The main idea of SVM is to find
an optimal hyperplane, y(ui), to describe a set of labeled
training data, {ui, zi}, where {ui} is the feature (input)
vector and {zi} is the target (output) vector of training data.
The function y(ui) has two main characteristics:

1. y(ui) must be as flat as possible,
2. y(ui) has at most ε deviation for all training data.

In other words, the optimization problem is to find the flattest
function for which the acceptable deviation from training
data is at most ε. The optimal hyperplane to which describes
the training data, {ui, zi}, can be defined as:

y(ui) = wTui + b (1)

where w and b are found by solving the SVM algorithm
for regression problems. Flatness of y(ui) in the Eq. (1) is
achieved by minimizing the second norm of w. Therefore,
the main objective of the SVM algorithm is to find a function
which minimizes ||w||22 subject to the training error tolerance
of ε. Then, the optimization problem to find the optimum
y(ui) is defined as:

Minimize:
1

2
||w||22

Subject to:

{
zi −wTui − b ≤ ε
wTui + b− zi ≤ −ε

i = 1, ..., n

(2)

The convex optimization problem, Eq. (2), is feasible when
such a y(ui) exists which is as flat as possible and
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approximates all training data with at most ε deviation. In
other words, the convex optimization problem is feasible
when:

−ε ≤ zi − yi ≤ ε (3)

So, the ε-insensitive linear loss function is defined as74:

Lε(zi,yi) =

{
0 |zi − yi| ≤ ε
|zi − yi| − ε otherwise

(4)

where the loss function would be zero if training error is less
than ε. Also, the empirical risk function, Remp, is defined
based on the loss function as75:

Remp(w,b) =
1

N

N∑
i=1

Lε(zi,yi) (5)

where Remp(w,b) is used in the optimization problem to
minimize the defined loss. If this function does not exist,
the convex optimization problem is infeasible. In this case,
slack variables are added to Eq. (3) to overcome the above
optimization problem infeasibility as:

−ε− ζ−i ≤ zi − yi ≤ ε+ ζ+i (6)

where the slack variables are introduced as penalty variables
to overcome this infeasibility of the convex optimization
problem. The empirical risk function can then be rewritten
based on the slack variables Using Eq. (6) as:

Remp(w,b) =
1

N

N∑
i=1

(
ζ−i + ζ+i

)
(7)

Then, the convex optimization problem is modified by
adding the minimizing empirical risk function term to Eq. (2)

Minimize:
1

2
||w||22 + C

n∑
i=1

(ζ+i + ζ−i )

Subject to:


zi −wTui − b ≤ ε+ ζ+i
wTui + b− zi ≤ ε+ ζ−i
ζ−i , ζ

+
i ≥ 0

(8)

where C is a positive regulatory parameter defined
as a trade-off factor between flatness of the model and
minimizing the training error tolerance. A model with
tolerated error and slack variables for a single feature-single
target system is schematically shown in Fig. 3. The ε-
insensitive linear loss function is schematically shown in
Fig. 4.

Dual Optimization Problem and computing w

To consider constraints of the convex optimization
problem in Eq. (8), the Lagrangian function is calculated
to change the convex optimization problem to a dual
optimization problem (also called primal problem) as62:

L =
1

2
||w||22 + C

N∑
i=1

(
ζ−i + ζ+i

)
−

N∑
i=1

α+
i (−zi + yi + ε+ ζ+i )−

N∑
i=1

µ+
i ζ

+
i

−
N∑
i=1

α−i (zi − yi + ε+ ζ−i )−
N∑
i=1

µ−i ζ
−
i

(9)

Figure 3. SVM regression and support vectors example

Figure 4. ε−sensitive Loss function with slack variable based
on 75

where α+
i , α−i , µ+

i , and µ−i are Lagrangian Multipliers and
α+
i , α

−
i , µ

+
i , µ

−
i ≥ 0. Based on the Saddle points condition,

the partial differential of the Lagrangian function with
respect to the optimization variables (w,b, ζ+i , andζ

−
i ) must

be equal to zero as62:

∂L

∂w
= 0 → w =

N∑
i=1

(α+
i − α

−
i )ui (10a)

∂L

∂b
= 0 →

N∑
i=1

(α+
i − α

−
i ) = 0 (10b)

∂L

∂ζ+i
= 0 → α+

i + µ+
i = C (10c)

∂L

∂ζ−i
= 0 → α−i + µ−i = C (10d)

where Eq. (10a) is the support vector expansion, Eq. (10b)
is the bias constraints, Eq. (10c), and Eq. (10d) are the
box constraint. Based on the support vector expansion,
Eq. (1), the prediction function (model) can be rewritten
using Eq. (10a) as

y(u) =

N∑
i=1

(α+
i − α

−
i )uiu + b (11)

The dual optimization problem is obtained by substituting
Eqs. (10a)-(10d) into Eq. (9) as
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Minimize: L =
1

2

N∑
i=1

N∑
j=1

(α+
i − α

−
i )(α

+
j − α

−
j )ui

Tuj

−
N∑
i=1

(α+
i − α

−
i )zi + ε

N∑
i=1

(α+
i + α−i )

Subject to:


∑N
i=1(α

+
i − α

−
i ) = 0

0 ≤ α+
i ≤ C

0 ≤ α−i ≤ C
(12)

Eq. (12) can be rewritten in a standard Quadratic
Programming form (QP)76:

Minimize:
1

2
αTHα+ fTα

Subject to: Aeqα = Beq

(13)

where

α =

[
α+

α−

]
, H =

[
H −H
−H H

]
, f =

[
−zi + ε
zi + ε

]
,

H =
[
ui
T uj

]
, Aeq = [1...1 − 1...− 1] , Beq = [0]

(14)

where w can be calculated by finding α (Solving Eq. (14))
and substituting it into Eq. (10a). This fact shows that matrix
w is calculated based on the linear combination of α and the
training data.

Karush-Kuhn-Tucker (KKT) conditions and
computing b

Based on KKT approach, the following equations must be
fulfilled at the optimum point 77,78:

α+
i (−zi + yi + ε+ ζ+i ) = 0 (15a)

α−i (zi − yi + ε+ ζ−i ) = 0 (15b)

µ+
i ζ

+
i = (C − α+

i )ζ
+
i (15c)

µ−i ζ
−
i = (C − α−i )ζ

−
i (15d)

Considering Eq. (15), only the following five cases are
possible:

α+
i = α−i = 0 (16a)

0 < α+
i < C, α−i = 0 (16b)

0 < α−i < C, α+
i = 0 (16c)

α+
i = C, α−i = 0 (16d)

α−i = C, α+
i = 0 (16e)

For |zi − yi| to be exactly equal to ε, the only Eqs. (16b)
and (16c) are necessary. So, the points of the training data
which have |zi − yi| = ε are called support vectors (circled
data points in the Fig. 3). Hence, the support vectors domain,
S, is calculated as:

S = { i | 0 < α−i + α+
i < C} (17)

where S is the index of the training data which form
the SVM training algorithm support vectors. Accord-
ingly, for the set of support vectors, zi equals to

yi + sign(α+
i − α−i )ε (i ∈ S). As a result, b is

calculated as:

b =
1

|S|

S∑
i∈S

(zi −wTui − sign(α+
i − α

−
i )ε) (18)

In summary, the convex problem (Eq. (8)) is changed to
the dual problem (Eq. (12)). Then, by solving the quadratic
programming, Eq. (13), and substituting it into the support
vector expansion, Eq. (10a), w is calculated. Then, vector
b is calculated using Eq. (18) (KKT conditions). Finally, by
substituting w and b into Eq. (1), the prediction model of a
given data set ({ui, zi}) is found as:

y(u) =

N∑
i=1

(α+
i − α

−
i )uiu

+
1

|S|

S∑
i∈S

(zi −wTui − sign(α+
i − α

−
i )ε)

(19)

In this study, y(u) is used to predict steady-state diesel
engine NOx emission and Brake Mean Effective Pressure
(BMEP). This function is used to predict steady-state
behaviour of engine and will be denoted as yss(u) in the
subsequent sections.

Full-order Model (FOM)
The diesel engine model consists three inputs and two

outputs. The model inputs are injected fuel amount mf ,
engine speed n, and fuel rail pressure Pr. The model outputs
are engine-out NOx emission and BMEP. To provide the
maximum model flexibility and to minimize the model
bias, the interactions of the primary features should also be
considered. The number of resulting features depends on
the highest order of interactions considered for the model.
The number of total features is calculated based on the r-

combination with repetitions formula
(

(n+r−1)!
r! (n−1)!

)
, where n

is the number of original features (in our case n = 3), and r
is the order of interactions79. So, the total number of features
in a model of order r is equal to the sum of all the features
with orders from 1 to r. The number of features for each
interaction order are listed in Table 2.

Table 2. Number of features in each order from 1 to 6 using
r-combination with repetitions formula

Order(r) r-combination
with repetitions

features number
up to order r

1 (3+1−1)!
1! 2! = 3 3

2 (3+2−1)!
2! 2! = 6 3 + 6 = 9

3 (3+3−1)!
3! 2! = 10 10 + 9 = 19

4 (3+4−1)!
4! 2! = 15 15 + 19 = 34

5 (3+5−1)!
5! 2! = 21 34 + 21 = 55

6 (3+6−1)!
6! 2! = 28 55 + 28 = 83

The total number of experimental points used for training
is 62. To simultaneously minimize the model bias and to
avoid over-fitting, orders 1 to 4 of the original inputs and
their interactions are considered as the base FOM model
(34 features) to predict the steady-state values of NOx and
BMEP. The FOM features are listed in Table 3. The feature
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Table 3. Features of the Full-Order Model (FOM) of NOx and
BMEP

U1 = mf U2 = n U3 = Pr
U4 = m2

f U5 = n2 U6 = P 2
r

U7 = mfn U8 = mfPr U9 = nPr
U10 = m3

f U11 = n3 U12 = P 3
r

U13 = m2
fn U14 = m2

fPr U15 = (n2)Pr
U16 = n2mf U17 = P 2

rmf U18 = P 2
r n

U19 = mfnPr U20 = m4
f U21 = n4

U22 = P 4
r U23 = m3

fn U24 = m3
fPr

U25 = n3Pr U26 = n3mf U27 = P 3
rmf

U28 = P 3
r n U29 = (mfn)

2 U30 = (mfPr)
2

U31 = (nPr)
2 U32 = P 2

r nmf U33 = n2mfPr
U34 = m2

fPrn

vector, Uj, is defined using Table 3 as

Uj = {ui}j i = 1, ..., n, j = 1, ..., 34 (20)

where n is the number of data points and j is the
index number of the features. As the dimensions and the
range of features are quite different, all of the features
must be normalized to improve the training performance80.
Particularly, for SVMs, the training time can be significantly
reduced by normalizing the features81. Here the rescaling
or also called min-max normalization method is used to
normalized feature for the SVM:

Ū =
U−min(U)

max(U−min(U)
(21)

The system outputs vector is defined as

Z = {zi} = [NOx,i BMEPi]
T i = 1, ..., n (22)

Then, the predicted steady-state NOx and BMEP are:

yss = [NOx,ss BMEPss]
T (23)

By solving the SVM algorithm for a given training data
set, {Ūj ,Z}, where Ūj and Z are calculated from Eq. (20)
and Eq. (22), respectively, the approximate function, yss

is obtained to predict the steady-state values of NOx and
BMEP. To cover a wide range of engine operating
conditions, the diesel engine was run at 84 operating points,
62 data points (74 %) are used as the training data, and
22 data points (26 %) are used to test the SVM learning
algorithm. To find hyperparameters of SVM (C), 15% of
the training data set (9 points of 62 training points) are
selected randomly and used for cross-validation. To find the
best regulatory parameter C of the FOM for both NOx and
BMEP, the effect of varying C on the squared correlation
coefficient (R2), maximum error between prediction and
actual data (Emax) and cost function (J(Emax, R2)), for
both training data and test data are analysed. The proposed
cost function to find C is defined as

J(Emax, R
2) =

√
Emax,tr Emax,ts

R2
tr R

2
ts

(24)

where Emax,tr and Emax,ts are the maximum errors
between the prediction and the actual data for training

and test data set respectively. Also, R2
tr and R2

ts are
squared correlation coefficient for training and test data set,
respectively. The goal is to increase C and to minimize the
maximum error and to maximize the squared correlation
coefficients for both the training and test data. Therefore,
the best C for modeling is obtained by minimizing
J(Emax, R

2). In this section, cross-validation data are
used in Eq. 24 to find the regulatory parameter C.
The squared correlation coefficient R2, maximum error
between prediction and actual data Emax and cost function,
J(Emax, R

2) with respect to the regulatory parameter C
for training, cross-validation, and test data set of the FOM
NOx and BMEP model are shown in Fig. 5. The regulatory
parameter, C, is a trade-off between the model flatness and
the tolerated error. Based on the results shown in Fig. 5, the
prediction error increases by decreasing C.

The squared correlation coefficient (R2) is used to quantify
the model accuracy. The maximum error between the
prediction and the actual data for both of the training and the
cross-validation data decrease as the regulatory parameter
C increases resulting in a decrease in J(Emax, R2). After
C reaches a certain value of Co, the model performance
enhancement levels off since the squared correlation
coefficient and the maximum error for all data are saturated.
By increasing C to more than Co, the model performance
remains unchanged, but the model flatness decreases, i.e.,
the over-fitting probability has increased. As a result, the
model is less robust for new test data due to possible
over-fitting. Therefore, by setting C = Co, the model
performance is maximized while over-fitting constraints are
fulfilled. To ensure all the important features are considered
when minimizing the slack variables in the optimization
problem, a sufficiently large value of regulatory parameter
C must be selected. Based on Fig. 5, Co for NOx and
BMEP are selected to be Co,NOx

= 85000 and Co,bmep =
60, respectively. The prediction versus the actual value for
FOM NOx and BMEP are shown in Fig. 6. Here, the
cross-validation portion of training data are shown for both
NOx and BMEP; however, to reduce the complexity of
figures, for the rest of the paper, combined cross-validation
and training data is illustrated as training data. It should
be noted that the regulatory parameter remains constant
throughout the MOR process.

Model Order Reduction (MOR)

Next, using the proposed FOM and by solving the
SVM algorithm for regression, matrices w and b are
obtained. The best C value for the SVM problem, Co,
is found using a different criteria. In this section, the
Model Order Reduction (MOR) algorithm is proposed to
reduce the order of NOx and BMEP steady-state FOM.
MOR helps to achieve an appropriate model by removing
redundant features and selecting the important ones. The
Nonlinear Reduced Control Oriented Model (NRCOM) is
found through flow chart in Fig. 7. For a given data set of
(mf , n, Pr) as the inputs and (BMEP,NOx) as the targets,
and starting from FOM with 34 features, first, w and b are
calculated. Then, the value of w is evaluated for each feature.
Then, the feature for which the w array has the minimum
value, is removed. Then, the SVM algorithm for regression
is solved for a new set of features. As a result of MOR
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Figure 5. Maximum error (Emax), correlation coefficient (R2), and cost function (J(Emax, R
2)) vs regulatory parameter C
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(a) Prediction vs Actual for NOx FOM
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(b) Prediction vs Actual for BMEP FOM

Figure 6. Prediction vs actual data for NOx and BMEP Full Order Model (FOM)

algorithm for NOx and BMEP, two types of models are
proposed as:

1. High-Order Model (HOM): For the HOM, the model
accuracy is the priority rather than the number of
features and the computation time. Therefore, only
the unnecessary features of FOM are removed. The
HOM model can be used in applications that require
high accuracy such as developing a NOx sensor fault-
detection algorithm or virtual plants to evaluate a
controller in simulation.

2. Low-Order Mode (LOM): For the LOM, the number
of features and the computation time are as important
as the model accuracy. The objective is to find a simple
model with fewer features and an acceptable accuracy.
As LOM has a simple structure and acceptable
accuracy, it is useful for designing a controller82.

As shown in Fig. 7, the features of HOM, mHOM , are
selected in a way that Jm(R2, Emax) is minimized since
the main objective of model order reduction for HOM is
maximizing the model accuracy by removing the redundant
features, with no concern for reducing the size of the

model. However, reducing the model size while keeping
the accuracy acceptable, was the objective for model order
reduction to the LOM. To avoid significant loss of the model
accuracy, the least significant features are removed one by
one until the relative deference between the cost functions
Jm and Jm−1 becomes more than the acceptable threshold.
Then the corresponding feature number is the number of
features of the LOM,mLOM . The relative deference between
Jm and Jm−1 is defined as:

dr(Jm, Jm−1) =
|Jm − Jm−1|

max(Jm, Jm−1)
(25)

In this study, the LOM is found by defining 25% threshold.
In other words, starting MOR from initial features, as soon
as relative deference between Jm and Jm−1 is more than
25%, the corresponding m is considered as LOM features
set, mLOM .

NOx steady State Model

The squared correlations coefficient (R2) and the
maximum error between prediction and actual data (Emax)
for both the training and the test data and defined cost
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Raw Data:
Inputs: (mf, n, pr)
Outputs: (BMEP, NOx)

Full Order Model FOM , Eq. (20)
m = number of the features

Convex Optimization Problem
Eq. (8)

Removing features ഥU l
Updating features

Dual Optimization Problem
Eq. (12)

Solving Quadratic
Programming, Eq. (13)

KKT Conditions, Eq. (15)

Finding b, Eq. (18)

y = wTu + b
Eq. (19)

uHO
′ = yHO

Transient Lag
Eqs. (30 − 31)

finding w
Eq. (10, a)

𝐒𝐞𝐜𝐭𝐢𝐨𝐧 𝟔: Control Oriented Model

𝐒𝐞𝐜𝐭𝐢𝐨𝐧 𝟑: Support Vector Machine SVM for Regression

𝐒𝐞𝐜𝐭𝐢𝐨𝐧 𝟓: Model Order Reduction MOR Algorithm

𝐒𝐞𝐜𝐭𝐢𝐨𝐧 𝟐: Experiment setup

Generating features, Table 3

𝐒𝐞𝐜𝐭𝐢𝐨𝐧 𝟒: Initail Features

m = 34

𝐹𝑖𝑛𝑑𝑖𝑛𝑔
min 𝑤 𝑚 → 𝑚 = 𝑙

𝑚

m = m− 1

Calculating J𝑚 R2, Emax

Eq. (24)

min Jm R2, Emax

|𝐽𝑚 − 𝐽𝑚−1|

max{𝐽𝑚, 𝐽𝑚−1}
< 25%

𝐻𝑂𝑀, 𝐸𝑞. (26,28) 𝐿𝑂𝑀, 𝐸𝑞. (27,29)

uLO
′ = yLO

𝐻𝑂𝑀 − 𝑁𝐶𝑂𝑀, 𝐸𝑞𝑠. (32)
𝑥𝐻𝑂 𝑘 = 𝐴𝑥𝐻𝑂 𝑘 − 1 + 𝐵𝑢𝐻𝑂

′ 𝑘 − 1

𝐿𝑂𝑀 − 𝑁𝐶𝑂𝑀, 𝐸𝑞𝑠. (33)
𝑥𝐿𝑂(𝑘) = 𝐴𝑥𝐿𝑂(𝑘 − 1) + 𝐵𝑢𝐿𝑂

′ (𝑘 − 1)
Transient Lag
Eqs. (30 − 31)

m = m𝐻𝑂𝑀 m = m𝐿𝑂𝑀

Normalization, Eq. (21)

Figure 7. Control Oriented Model (COM) development and SVM-based MOR algorithm

function (J(R2, Emax)) with respect to the number of
features are shown in Fig. 8.

Based on Fig. 8, sincemin{J(R2, Emax)} is achieved for
a 29-feature model (mHOM,NOx

= 29). These models with
these 29 features is chosen as the HOM NOx. In other words,
the 29-feature model is chosen as the HOM because it has
the highest accuracy among all the models studied. Tracking
Jm − Jm−1 as a function of m in Fig. 8 by starting from
m = 34, the first relative difference larger than 25% occurs
for a 9-feature model (mLOM,NOx

= 9), the models with
9 features is chosen as the LOM for NOx, i.e., the model
with 9 features is chosen as LOM because by decreasing
the model features to less than 9, a significant reduction in
model performance (Jm) is occurred. As ANN is widely
used for the engine performance and emission modeling,
the SVM model for all of the developed models (FOM,
HOM, and LOM) are compared with an ANN using the same
set of features. This provide a standard to compare these
results to a ANN. In this study, a two-layer (one hidden
layer and one output layer) feed-forward backpropagation
network with three neurons in the hidden layer is employed,
and the Levenberg-Marquardt training method is used to
train the model which has a relatively fast convergence39.The
selection of hidden layer and neurons number was based on
similar ANN-based studies in the literature. To make sure
that the number of neurons are compatible with the size of
data set, three neurons are considered for the hidden layer as
proposed by a similar study with a similar data size22,39. The
same training, cross validation, and test data set are used for
the SVM and the ANN models. Both algorithms use 15% of
the training data set to find the model hyperparameters.

The maximum error between the prediction and the actual
training data set, squared correlation coefficient, the defined
cost function, and training time for both SVM and ANN
training methods are listed in Table 4. The results reveal
that, the SVM model has a shorter training time and a
more accurate model (larger squared correlation coefficient
and smaller maximum error between actual and model),
especially for the test data. This is partly due to the fact
that ANN uses gradient descent algorithm for training
which increases the risk of converging to local minima.
Additionally, the risk of overfitting is higher for ANN for
the same size of training data83. This problem is also shown
in the results where the squared correlation coefficient of
test data for ANN is less than the SVM model. Since the
training time of SVM is significantly less than ANN, it is
more suitable for real-time applications. Another benefit of
using this SVM is that the model is far simpler to explain
mathematically in the form of an equation, especially when a
linear kernel is used. When using the linear kernel, the SVM
model is defined based on the vector w with a bias b.

It should be noted that the performance of HOM is even
better than FOM as a result of removing unnecessary features
that affect the flatness of the SVM algorithm. Based on Table
4, the accuracy of LOM is acceptable where the error is
above the defined threshold.

Thus, the HOM and LOM features are (see Table 3)

ŪNOx,HO = Ūj

j = 1− 9, 11− 15, 17, 19− 27, 29, 31− 34

(26)
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Figure 8. Maximum error (R2), squared correlation coefficient (R2), and cost function (J(Emax, R
2)) vs number of features of

prediction function for steady-state NOx prediction

Table 4. Performance of the NOx Full-Order Model (FOM), High-Order Model (HOM), and Low-Order Model (LOM)

Model Type FOM HOM LOM
No. of Features 34 29 9

Training Method SVM ANN SVM ANN SVM ANN
Emax,tr [ppm] 19.6888 25.6473 19.5689 27.3405 66.02 57.9259
Emax,ts [ppm] 21.660 60.7375 21.6665 47.7841 22.91 60.2836
R2
tr 0.9934 0.9969 0.9934 0.9837 0.9490 0.9891

R2
ts 0.9725 0.9775 0.9725 09664 0.9677 0.9760

J(Emax, R
2) [ppm] 21.0106 39.9824 20.9490 37.0706 40.58 54.67

Training Time [ms] 9.47 240.6 11.07 202.0 13.10 194.5

ŪNOx,LO = Ūj

j = 2, 5, 8, 15, 21, 22, 27, 32, 33
(27)

where i is the data index and j is the feature index. By
solving the SVM algorithm for NOx, the features of HOM
and LOM are obtained. The equation of NOx,HO,ss and
NOx,LO,ss are listed in Appendix (), Eqs. (40) and (41).
The predicted steady-state NOx vs the actual value for both
the high-order and the low-order steady-state NOx model in
shown in Fig. 9. Based on Fig. 9-(a), most of the test and the
training data are within the defined tolerance ε for HOM of
NOx. However, as shown in Fig. 9-(b), the accuracy of LOM
is not consistent throughout all data points for both training
and test points and item number of outliers are greater than
the HOM.

BMEP steady state Model
Similar to the NOx steady-state model, the

BMEP reduced steady-state model is obtained. The
squared correlations coefficient (R2) and the maximum
error between prediction and actual data (Emax) for both
the training and the test data and defined cost function
(J(R2, Emax)) with respect to the number of features
are shown in Fig. 10. Based on Fig. 10, a 20-feature
model (mHOM,BMEP = 20) and a 6-feature model
(mLOM,BMEP = 6) are chosen as the HOM and LOM
of BMEP, respectively. The maximum error between
the prediction and the actual data (Emax), the squared

correlation coefficient (R2), cost function (J(Emax, R2)),
and training time for ANN and SVM training methods
are listed in Table 5. Similar to the NOx model, for all
the BMEP models, the SVM has faster training and more
accurate response compared to the ANN especially for test
data. The general performance of HOM is acceptable with
respect to the FOM, while it has a simpler structure. Also,
the 6-feature model is chosen as LOM. As shown in Table 5,
the accuracy of the model is acceptable, and by reducing the
model further, the model becomes inaccurate.

Thus, the HOM and LOM features are obtained as:

ŪBMEP,HO = Ūj

j = 1, 4, 7− 10, 17− 21, 24− 27, 29− 32, 34

(28)

ŪBMEP,LO = Ūj

j = 1, 18, 21, 25, 27, 30
(29)

where i is the is data index, and j is the feature index.
By solving the SVM algorithm for BMEP, the HOM and
the LOM are achieved. The equation of BMEPHO,ss

and BMEPLO,ss are listed in Appendix () Eqs. (42) and
(43). The predicted steady-state BMEP with respect to the
actual value for both of the high-order and the low-order
steady-state BMEP models are shown in Fig. 11. As shown
in Table 5, the HOM and LOM have an acceptable accuracy
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(a) HOM of NOx (with 29 features)
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(b) LOM of NOx (with 9 features)

Figure 9. Prediction vs actual data for the Low-order Model (LOM) and the High-order Model (HOM) of NOx
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Figure 10. Maximum error (R2), squared correlation coefficient (R2), and cost function (J(Emax, R
2)) vs number of features of

prediction function for steady-state BMEP prediction

Table 5. Performance of the BMEP Full-Order Model (FOM), High-Order Model (HOM), and Low-Order Model (LOM)

Model Type FOM HOM LOM
No. of Features 34 20 6
Training Method SVM ANN SVM ANN SVM ANN
Emax,tr [ppm] 0.3560 0.4006 0.3526 0.3859 0.810 0.5435
Emax,ts [ppm] 0.3513 0.4484 0.3477 0.4151 0.2998 0.4732
R2
tr 0.9978 0.9987 0.9978 0.9953 0.9947 0.9961

R2
ts 0.9957 0.9959 0.9957 0.9961 0.9962 0.996

J(Emax, R
2) [ppm] 0.3548 0.4250 0.3513 0.4020 0.4952 0.5091

Training Time [ms] 35.9 199.8 9.2 218.0 9.5 214.7

while the HOM has a higher accuracy than LOM. However,
the LOM of BMEP has only 6 features, which makes it a
simple model that requires a low computational effort. Most
of the test and the training data for both HOM and LOM
of BMEP are within the defined tolerance ε, as shown in
Fig. 11. This means that the MOR improves in the accuracy

of the FOM by removing its unnecessary features.

One important observation from the training time (Table
4 and Table 5) is that by increasing number of features in
ANN, the training time is increased. However, this trend
inverses in the SVM such that by decreasing the number of
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the features, the training time increases. This behavior results
in reducing the overall training time due to the time that is
saved by reducing the number of training iterations84. This
trend appears in the HOM and LOM models.

BMEP and NOx Non-linear Control Oriented
Model

The model described above is used to determine
steady state NOx and BMEP. Now a simple 1st order
dynamic model for transient operation will be defined. To
derive the discrete-time dynamic control oriented model,
NOx concentration at step k for a sampling interval of T,
is calculated as follows:

NOx(k) = (1− T

τNOx + T
)NOx(k − 1)

+
T

τNOx + T
NOx,ss(k − 1)

(30)

and the BMEP at step k is calculated using the following
equation:

BMEP (k) = (1− T

τBMEP + T
)BMEP (k − 1)

+
T

τBMEP + T
BMEPss(k − 1)

(31)

where NOx,ss(k − 1) and BMEPss(k − 1) are the
steady state NOx and BMEP calculated using Eqs. (40) and
(43). Hence τ is the sample interval and k is the sample time
while τNOx and τBMEP are the time constant parameters for
NOx and BMEP respectively, which are estimated based on
the experimental data and are found to be 1 and 0.2 seconds,
for NOx and BMEP respectively70. The state space of the
control oriented model for both high-order and low-order
models can be defined as:

xHO(k) = AxHO(k − 1) + BûHO(k− 1) (32)

xLO(k) = AxLO(k − 1) + BûLO(k− 1) (33)

where vector x(K) contains two model states:

xHO(k) =
[
NOx,HO(k) BMEPHO(k)

]T
(34)

xLO(k) =
[
NOx,LO(k) BMEPLO(k)

]T
(35)

and vector û(k) is calculated as

ûHO(k) =

[
NOx,HO,ss

BMEPHO,ss

]
(36)

ûLO(k) =

[
NOx,LO,ss

BMEPLO,ss

]
(37)

where NOx,HO,ss, BMEPHO,ss, NOx,LO,ss, and
BMEPLO,ss are listed in Appendices A and B. The vector
y contains two model outputs:

y(k) =
[
x1(k) x2(k)

]
(38)

Matrices A and B are:

A =

 1− T
τNOx+T

0

0 1− T
τBMEP+T



B =

 T
τNOx+T

0

0 T
τBMEP+T


(39)

Therefore, the HOM and LOM Nonlinear Control
Oriented Models (NCOM) for NOx and BMEP are obtained
as Eqs. (31) and (30). The open-loop response for HOM-
NCOM and LOM-NCOM for NOx and BMEP at four
different engine speeds of 1250, 1500, 1750, and 2000
rpm are shown in Fig. 12, 13, 14, and 15. In all
cases, Pr and mf are the system inputs are applied to
both HOM-NCOM and LOM-NCOM. In each transient
test, the engine speeds remains constant (with a 10 rpm
tolerance). In all of these plots the open-loop response of
both HOM-NCOM and LOM-NCOM based on the model
vs actual measurements are shown. For BMEP both the
HOM-NCOM and LOM-NCOM follow the experimental
closely as expected when looking at Fig. 11. However,
NOx response for LOM-NCOM has different accuracies at
different engine speeds. For instance, in Fig. 15 and Fig. 13,
the LOM-NCOM NOx response is less accurate than the
HOM model. Nonetheless, NOx response for HOM-NCOM
is accurate at the all speeds studied. As the HOM-NCOM
model has an accurate response over a wide range of engine
operating points and is an accurate model for possible use
as a virtual plant to simulate the designed controller before
implementation in a real-time system. Additionally, it can be
used as an accurate model for a NOx sensor fault detecting
algorithm. As the LOM-NCOM has a simple structure, it is
quite suitable for designing a model-based robust controller
such as Sliding Mode Controller (SMC)85 and is also capable
of predicting samples ahead based on the current states and
the inputs of the system. A robust controller can be used to
overcome the model mismatch between LOM-NCOM and
HOM-NCOM.

Conclusions
A Model Order Reduction (MOR) algorithm is developed

using support vector machine (SVM) approach to predict
the steady-state NOx and BMEP of a medium-duty diesel
engine. Based on the proposed SVM-based MOR algorithm
and starting with a 34-feature Full-Order Model (FOM), a
High-Order Model (HOM) and a Low-Order Model (LOM)
are developed to predict the steady-state NOx emission
and BMEP. The features of the models are calculated
based on orders 1 to 4 of the main model inputs and the
interactions of them. In this study, 84 engine operating
points are considered, 74% of which is used to train the
steady-state NOx and BMEP , and 26% is used as test
data. The model inputs are engine speed, injected fuel
amount, and fuel rail pressure. The results of the steady-
state model show that the HOM model has an accurate
prediction but a more complex structure with 29 features
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(a) of BMEP (with 20 features)
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(b) LOM of BMEP (with 6 features)

Figure 11. Prediction vs actual data for High-Order Model (HOM) and Low-Order Model (LOM) of BMEP
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Figure 12. Transient response at engine speed = 1250 rpm
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Figure 13. Transient response at engine speed = 1500 rpm

for NOx and 20 features for BMEP. For the steady-
state NOx model, the squared correlation coefficient of
test (R2

ts) is equal to 0.9724, 0.9725, and 0.9677 for
FOM, HOM, and LOM, respectively. The R2

ts value is
equal to 0.9957, 0.9957, and 0.9962 for FOM, HOM,
and LOM, respectively for the BMEP steady-state model.
Consequently, by removing unnecessary features based on
the SVM-based MOR algorithm, the performance of the
HOM for both NOx and BMEP is enhanced while the
HOM complexity decreases 27.9 % with respect to the FOM.
The LOM model has an acceptable accuracy with squared
correlation coefficient of 0.9393 for NOx and 0.9961 for
BMEP while it has 77.9 % and 69.4 % fewer features with
respect to the FOM and HOM, respectively. All FOM, HOM,
and LOM SVM models of NOx and BMEP are compared

with an ANN, and results show shorter training time and
more accurate results in the test data for the SVM models
compared to the ANN. The SVM model training are at least
5 to 14 times faster than the corresponding ANN models with
the same set of features, for NOx and BMEP respectively. In
addition, the use of a linear kernel in the SVM make it more
suitable for real-time applications and for control-oriented
models.

Then, a nonlinear control-oriented model (NCOM) is
developed based on the developed SVM models to predict
the transient behavior of the system. A fast response
electrochemical NOx sensor is used to verify the transient
response of the NCOM. The transient results of HOM
and LOM are compared to experimental data showing
an accurate and robust prediction of engine BMEP at
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Figure 14. Transient response at engine speed = 1750 rpm
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Figure 15. Transient response at engine speed = 2000 rpm

different engine speeds for rising and falling step changes
of the fuel rail pressure and the injected fuel amount
for HOM. Additionally, the LOM model has an accurate
response at different speeds for BMEP; however, the
NOx prediction with LOM has varying accuracy at different
engine speeds. It can be concluded that the HOM can predict
NOx and BMEP over a wide range of operating points,
which makes it ideal to be used as a virtual plant for fault
detection purposes. The LOM has a simpler structure, and
an acceptable accuracy which makes it useful in designing
a model-based robust controller such as sliding mode or
backstepping controllers. Extending the MOR algorithm to
predict the steady-state values of other engine emissions and
developing a NOx sensor fault detection algorithm based on
this model will be investigated in future work.
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injection timing of diesel fuel on performance and emission of
dual fuel diesel engine powered by diesel/E85 fuels. Transport.
2018;33(3):633–646.

3. Chang YC, Lee WJ, Wu TS, Wu CY, Chen SJ. Use of water
containing acetone–butanol–ethanol for NOx-PM (nitrogen
oxide-particulate matter) trade-off in the diesel engine fueled
with biodiesel. Energy. 2014;64:678 – 687.

4. Bohl T, Smallbone A, Tian G, Roskilly AP. Particulate number
and NOx trade-off comparisons between HVO and mineral
diesel in HD applications. Fuel. 2018;215:90 – 101.

5. Johnson TV. Review of Vehicular Emissions Trends. SAE Int
J Engines. 2015 04;8.

6. Praveena V, Martin MLJ. A review on various after treatment
techniques to reduce NOx emissions in a CI engine. Journal of
the Energy Institute. 2017.

7. Geng P, Tan Q, Zhang C, Wei L, He X, Cao E, et al.
Experimental investigation on NOx and green house gas
emissions from a marine auxiliary diesel engine using ultralow
sulfur light fuel. Science of The Total Environment.
2016;572(Supplement C):467 – 475.

8. Blanco-Rodriguez ID. Modelling and observation of exhaust
gas concentrations for diesel engine control. Springer; 2014.

9. Koebel M, Elsener M, Kleemann M. Urea-SCR: a promising
technique to reduce NOx emissions from automotive Diesel
engines. Catalysis Today. 2000;59(34):335 – 345.

10. Maiboom A, Tauzia X, Hétet JF. Experimental study of various
effects of Exhaust Gas Recirculation (EGR) on combustion
and emissions of an automotive direct injection Diesel engine.
Energy. 2008;33(1):22–34.

11. Ebrahimi K, Aliramezani M, Koch CR. An HCCI Control
Oriented Model that Includes Combustion Efficiency. IFAC-
PapersOnLine. 2016;49(11):327–332.

12. Gordon D, Wouters C, Wick M, Lehrheuer B, Andert J, Koch
C, et al. Development and experimental validation of a field
programmable gate array–based in-cycle direct water injection
control strategy for homogeneous charge compression ignition
combustion stability. International Journal of Engine Research.
0;0(0):1468087419841744.

13. Chavannavar P. Development and Implementation of a
Mapless, Model Based SCR Control System. SAE Int J
Engines. 2014 07;7:1113–1124.

14. Aliramezani M, Koch CR, Hayes RE. Estimating tailpipe
NOx concentration using a dynamic NOx/ammonia cross

Prepared using sagej.cls



Norouzi et al. 15

sensitivity model coupled to a three state control oriented SCR
model. IFAC-PapersOnLine. 2016;49(11):8 – 13. 8th IFAC
Symposium on Advances in Automotive Control AAC 2016.

15. Triantafyllopoulos G, Katsaounis D, Karamitros D, Ntziachris-
tos L, Samaras Z. Experimental assessment of the potential to
decrease diesel NOx emissions beyond minimum requirements
for Euro 6 Real Drive Emissions (RDE) compliance. Science
of the Total Environment. 2018;618:1400–1407.

16. Senda T, Harumi K. Prospects and Challenges for the Future of
Marine Power Systems. Marine Engineering. 2018;53(3):279–
284.

17. Tang W, Siani A, Chen F, Chen B. On Developing Advanced
Catalysts Systems to Meet China New Regulations. SAE
Technical Paper; 2019.

18. Wong PK, Wong HC, Vong CM. Online time-sequence
incremental and decremental least squares support vector
machines for engine air-ratio prediction. International Journal
of Engine Research. 2012;13(1):28–40.

19. Aliramezani M, Koch CR, Patrick R. Phenomenological model
of a solid electrolyte NOx and O2 sensor using temperature
perturbation for on-board diagnostics. Solid State Ionics.
2018;321:62 – 68.

20. Ansari E, Menucci T, Shahbakhti M, Naber J. Experimental
investigation into effects of high reactive fuel on combustion
and emission characteristics of the Diesel-Natural gas
Reactivity Controlled Compression Ignition engine. Applied
Energy. 2019;239:948–956.

21. Potenza R, Dunne J, Vulli S, Richardson D, King P.
Multicylinder engine pressure reconstruction using NARX
neural networks and crank kinematics. International Journal
of Engine Research. 2007;8(6):499–518.

22. He Y, Rutland C. Application of artificial neural networks in
engine modelling. International Journal of Engine Research.
2004;5(4):281–296.

23. Rezaei J, Shahbakhti M, Bahri B, Aziz AA. Performance
prediction of HCCI engines with oxygenated fuels using
artificial neural networks. Applied Energy. 2015;138:460–473.

24. Moiz AA, Pal P, Probst D, Pei Y, Zhang Y, Som S, et al.
A machine learning-genetic algorithm (ML-GA) approach for
rapid optimization using high-performance computing. SAE
International Journal of Commercial Vehicles. 2018;11(2018-
01-0190):291–306.

25. Badra J, Khaled F, Tang M, Pei Y, Kodavasal J, Pal P, et al.
Engine Combustion System Optimization Using CFD and
Machine Learning: A Methodological Approach. In: Internal
Combustion Engine Division Fall Technical Conference. vol.
59346. American Society of Mechanical Engineers; 2019. p.
V001T06A007.

26. Owoyele O, Pal P. A Novel Active Optimization Approach for
Rapid and Efficient Design Space Exploration Using Ensemble
Machine Learning. In: ASME 2019 Internal Combustion
Engine Division Fall Technical Conference. American Society
of Mechanical Engineers Digital Collection;. .

27. Xu Y, Guo R, Wang L. A twin multi-class classification support
vector machine. Cognitive computation. 2013;5(4):580–588.

28. Tanveer M. Robust and sparse linear programming
twin support vector machines. Cognitive Computation.
2015;7(1):137–149.

29. Bertram AM, Kong SC. Computational Optimization of a
Diesel Engine Calibration Using a Novel SVM-PSO Method.
SAE Technical Paper; 2019.

30. Hanuschkin A, Schober S, Bode J, Schorr J, Böhm B, Krüger
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Steady-state NOx Model

NOx,HO,ss = wT
NOx

ŪNOx,HO + bNOx,HO

= 528.93 Ū1 − 2411.93 Ū2 + 1544.89 Ū3 − 1177.86 Ū4 + 3654.47 Ū5 − 1495.65 Ū6

− 836.09 Ū7 + 1123.75 Ū8 − 512.52 Ū9 − 1230.75 Ū11 − 1319.38 Ū12 + 2846.76 Ū13

− 612.65 Ū14 + 1574.67 Ū15 + 529.47 Ū17 − 2329.74 Ū19 + 1214.66 Ū20 − 573.96 Ū21

+ 1076.88 Ū22 − 1129.99 Ū23 − 2012.74 Ū24 − 1001.16 Ū25 + 815.56 Ū26 + 1440.14 Ū27

− 1571.92 Ū29 + 789.89 Ū31 − 2795.74 Ū32 + 1602.41 Ū33 + 2640.48 Ū34 + 782.81

(40)

NOx,LO,ss = wT
NOx

ŪNOx,LO + bNOx,LO

= −1654.78 Ū2 + 1082.55 Ū5 + 269.24 Ū8 + 1682.28 Ū15 − 946.71 Ū21 − 320.70 Ū22

+ 2549.50 Ū27 − 4713.23 Ū32 + 2608.52n2 Ū33 + 1017.98

(41)

Steady-state BMEP Model

BMEPHO,ss = wT
BMEP ŪBMEP,HO + bBMEP,HO

= +3.03 Ū1 + 1.41 Ū4 + 1.57 Ū7 + 2.04 Ū8 − 2.05 Ū9 + 0.78 Ū10 + 1.47 Ū117

− 2.03 Ū18 + 1.05 Ū19 + 0.93 Ū20 − 1.16 Ū21 − 2.18 Ū24 + 1.66 Ū25 − 1.78 Ū26

+ 1.49 Ū27 − 0.75 Ū29 − 2.12 Ū30 + 1.35 Ū31 + 0.83 Ū32 − 0.81 Ū34 + 6.52

(42)

BMEPLO,ss = wT
BMEP ŪBMEP,LO + bBMEP,LO

= +6.36 Ū1 − 3.54 Ū18 − 5.00 Ū21 + 6.10 Ū25 + 3.89 Ū27 − 2.95 Ū30 + 6.62
(43)
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