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Abstract

A new control strategy is developed to reduce the diesel engine NOx emission and to control the en-
gine Brake Mean Effective Pressure (BMEP). A Multi-Input Multi-Output (MIMO) dynamic diesel engine
NOx emission and BMEP model which was developed based on the experimental data is implemented to esti-
mate the open-loop NOx emission and engine BMEP as a function of engine speed, injected fuel amount and
the injection rail pressure. A fast response electromechanical NOx sensor is used to measure the NOx con-
centration inside the exhaust gas. Then, a PD-type Fuzzy Iterative Learning Control (PD-FILC) is designed.
The fuzzy logic mechanism is used in this controller to update the proportional and the derivative terms
of the PD-type ILC controller to achieve the fast and accurate response. The PD-FILC controller uses the
injected fuel amount and the fuel rail pressure modification to track the desired engine BMEP and to reduce
the NOx concentration simultaneously.

Keywords— Diesel Engine Control, NOx emission, electromechanical NOx sensor, Iterative Learning Control, Fuzzy
Logic Control

1 Introduction

The non-homogeneous air-fuel mixture and high combustion temperature of diesel engines increases their NOx and
particulate matter emissions [1, 2]. Different methods have been developed to address this problem and reduce diesel
engine NOx emission including Exhaust Gas Recirculation (EGR) [3], Low Temperature Combustion (LTC) [4] and urea-
based Selective Catalytic Reduction (SCR) [5]. However, new engine control strategies and after treatment systems are
still needed to meet stringent NOx and particulate emission regulations [6]. Using fast response engine emission sensors
for engine feedback control is a promising way to meet the strict emission regulations by minimizing the engine-out
emissions [7] and carrying out on-board diagnostics [8].

Iterative Learning Control (ILC) is a promising control strategy for internal combustion engines due to their repetitive
behavior and cyclic performance. ILC is widely used in literature for various repetitive systems such as industry robotics
arms [9–11], injection molding machine [12], twin-roll strip casting [13], autonomous vehicles [14], high-speed trains
[15], economic optimization for batch processes [16], electromechanical Valve Actuator in Camless Engines [17], antilock
braking of electric and hybrid vehicles [18], helical contouring control for CNC machine [19], PM Synchronous Motors
[20], and pitch of wind turbine [21].

Different methods are used to modify the performance of an ILC controller to achieve fast and accurate response. An
adaptive control law is combined with the ILC method to control six degree-of-freedom manipulator robot [22]. In [11],
PD-type Fuzzy ILC controller is designed to control MIMO manipulator robot and conclude that the PD-type Fuzzy
ILC is faster and more accurate than simple ILC. Optimizing PID-type ILC is another method of using PID-type ILC
which is used in controlling aluminum extruder [23]. Loop-shaping design of a linear quadratic (LQ) ILC is used for
controlling a rapid thermal processing [24]. Using the local symmetrical double-integral type ILC (LSI2 type ILC) for
controlling omni-directional autonomous mobile robot is another method to improve the performance of ILC controller.
The results of LSI2-type ILC shows the accurate path-following for autonomous mobile vehicle [14]. Permanent magnet
synchronous motors (PMSMs) are controlled by using current and future error term in ILC controller [20]. PD-type
ILC controller is used to controlling robust anti-lock braking of electric and hybrid vehicles [18]. P-type ILC control for
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flexible valve actuation control of non-throttled engine load control is proposed in [17]. PD-type spatial iterative learning
control (SILC) is used to control the pitch of wind turbine, and the convergence of the designed controller is derived
based on tracking error in the form of Lebesgue-ρ norm [21].

First dynamic diesel engine model for NOx emission and BMEP is developed based on experimental data. Then, a PD-
FILC controller (PD-type Fuzzy Iterative Learning Control) is introduced as a promising method to reduce the engine
NOx emission. The ILC is coupled with the engine model to reduce NOx emission at a desired BMEP.

2 Dynamic Diesel Engine Model for NOx and BMEP

2.1 Control Oriented Model

A two-state control oriented engine model developed in [25] is used to estimate the Brake Mean Effective Pressure
(BMEP) and the engine NOx emission as a function of injected fuel, the injection rail pressure and engine speed. The
control oriented model is as follows [25]:

The model inputs, states, parameters and outputs are classified as vectors. The vector x contains two model states:

x(k) =
[
NOx(k) BMEP (k)

]
(1)

where, NOx and BMEP are the engine NOx emission [ppm] and brake mean effective pressure [bar]. respectively.

The vector u contains three model inputs:

u(k) =
[
mf (k) Pr(k) n(k)

]
(2)

where, mf Pr and n are the injected fuel amount [mg/stroke], rail pressure [bar] and engine speed [rpm] respectively.

The vector ζ contains 14 model parameters with values defined in [25]:

ζ =

[
τNOx τBMEP ao a1 a2 a3 a4 a5 a6 a7 bo b1 b2

]
(3)

The control oriented model states are [25]:

x1(k + 1) =

(
1− ζ1

ζ2 + ζ1

)
x1(k) +

ζ1
ζ2 + ζ1

(
ζ4 + ζ5u1(k + 1) + ζ6

[
u1(k + 1)

]2
+ ζ7

[
u1(k + 1)

]3
+ζ8u2(k + 1) + ζ9

[
u2(k + 1)

]2
+ ζ10u3(k + 1) + ζ11

[
u3(k + 1)

]2) (4)

x2(k + 1) =

(
1− ζ1

ζ3 + ζ1

)
x2(k) +

ζ1
ζ3 + ζ1

ζ12

([
u3(k + 1)

]ζ13[
u1(k + 1)

]ζ14)
(5)

The vector y contains the two model outputs:

y(k) =
[
x1(k) x2(k)

]
(6)

The model parameters are estimated based on the experimental data and are available in [25].

2.2 Model Validation Experimental Setup

To study the engine NOx emission at different engine operating conditions, an electrochemical NOx sensor was mounted
in the exhaust pipe of a four cylinder medium duty Tier III diesel engine (Cummins QSB4.5 160 - Tier 3/Stage IIIA).
The engine charactristics are available in [25]. To record the engine main variables and operating parameters, the Engine
Control Unit (ECU) is connected to a hardware interface (INLINE 6) via CAN BUS J1939 connector. A production
ECM NOx sensor (P/N: 06-05) is used to measured and the engine-out NOx emission. More information about the
NOx sensor is available in [26].
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3 Controller Design for NOx and BMEP

3.1 Iterative Learning Control

The general type of ILC control is defined as

uj(k) = Q(uj−1(k)) + L(ej−1(k)) (7)

where L and Q are L-Filter (learn filter) and Q-filter respectively, k is discrete time index from k = 0 to k = N which
results in a cycle period of τ = NT, where T is the sample time. The index j represents the iteration cycle. Different
types of ILC can be defined by using a different function for L-Filter and Q-Filter. The simplest ILC controller is P-type
ILC controller which is defined by assuming Q-filter and L-filter to be constant matrices and Q-filter is assumed to be
the identity matrix so that the P-type ILC controller is

uj(k) = uj−1(k) + Pej−1(k) (8)

A derivative term can be added to L-Filter to achieve PD-type ILC controller. So, the PD-type ILC controller with
Q = I is

uj(k) = uj−1(k) + Pej−1(k) +D(ej−1(k)− ej−1(k − 1)) (9)

where P are the proportional and D is derivative learning gain respectively [27].

3.2 PD-type Fuzzy Iterative Learning Control (PD-FILC)

PD-type Fuzzy Iterative Learning Control (PD-FILC) is used for NOx reduction control and desired BMEP tracking.
In order to examine the performance of the closed-loop system, the closed loop results are compared to the reference
(open-loop) system results. In this case, the objective of the closed loop system is to reduce the NOx concentration
up to 20% of the reference NOx value while keeping the BMEP at the desired value which is equal to the reference
value. The block diagram of the proposed emission control is shown in Fig.1 (a). In this control strategy, fuel rail
pressure and injected fuel amount are adjusted based on the NOx reduction error and the desired BMEP. The BMEP
and NOx tracking errors are calculated as follows:

e1 = BMEPd −BMEP

e2 = NOx,refNOx,rlm −NOx
(10)

where BMEPd, BMEP , NOx,ref , and NOx,rlm and NOx are the desired BMEP, actual BMEP (controlled system),
NOx reference system response, NOx reduction lower limit and the NOx concentration after implementing the controller.
The corrected rail pressure and injected fuel amount are calculated based on the PD-type ILC controller as follows:

ui,j(k) = ui,j−1(k) + Piei,j−1(k) +Di(ei,j−1(k)− ei,j−1(k − 1)), i = 1, 2 (11)

Where Pi and Di are the proportional and derivative gains, u3(k) is the engine speed which is assumed to be constant
(u3(k) = 1500rpm) in this study. The corrected control input is limited by using a reference system which is function
of injection rail pressure and injected fuel amount that was calibrated for the stock engine controller. This saturation
limit was applied to avoid unexpected increases in the other emission types such as unburned hydrocarbons (HC) and
particulate matter (PMs) and to minimize a possible decrease in the combustion efficiency.

A fuzzy logic rule used for updating controller gains (Pi and Pi) is based on the Euclidean norm of system errors (e1
and e2) over the cycle j. Euclidean norm for both e1 and e2 are defined of each iteration as:

||ei(j)||2 =
√
eTi(j)ei(j) i = 1, 2 (12)

where e1,j and e2,j are the error of BMEP and NOx control in the jth iteration respectively. Therefore, the controller
gains are updated using the fuzzy logic mechanism. The advantage of using fuzzy logic methodology is that a larger
learning gain can be applied for the larger errors. This makes the controller reduce the errors faster than a simple ILC
controller. To apply the control over a wide range of error, the normalized error, based on a maximum gain of Pi and
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Di is used. Because the maximum Euclidean norm of all cycles occurs in the first cycle (j = 1), the Euclidean norm
of the first cycle is used for normalization. Then, the outputs of fuzzy mechanism need to be denormalized based on
maximum value of controller coefficient ( pi,max and Di,max where i = 1, 2). The PD-FILC controller structure is shown
schematically in Fig. 1 (b).
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Fig. 1: Block Diagrams of PD-FILC Controller for diesel engine NOx reduction

4 Results and Discussion

The simulation results of PD-FILC controller along with the emission model output are shown in Fig. 2. The step func-
tion is assumed as BMEPref , and the fraction of the reference system response of NOx(NOx,ref = NOx,olNOx,rlm)
is considered as the reference of NOxcontrol. For the controller, the amount of NOx is reduced as a result of reduc-
ing the fuel rail pressure. Reducing the rail pressure decreases by 13% (mean value) the NOx in a cycle. In some
cycles, the controller cannot reduce the amount of NOx as it has to tracking the BMEP. The controller attempts to
track the desired BMEP by overshooting the injected fuel and rail pressure steps. As shown in Fig. 2, the controller
has accurate performance in controlling the BMEP, and by modifying injected fuel and fuel rail pressure, the engine
has less NOx emission and an accurate output BMEP tracking. The engine NOx reduction is maintained while the
BMEP is also controlled. In addition, to study the convergence of the controller, the Euclidean norm error versus the
iteration domain is also shown in Fig. 2 which reveals that the controller converges in the 50 iterations for the case tested.

5 Conclusion

A MIMO dynamic diesel engine NOx emission and BMEP model which was developed based on the experimental data is
implemented to design a closed loop engine controller. The PD-FILC controller is designed to reduce NOx emission and
to track the desired BMEP. In the proposed control strategy, fuel rail pressure and injected fuel amount are modified
based on the reference values of the NOx concentration and BMEP. Using a fraction of reference system response of
NOx concentration as the desired input of the NOx controller, results in an average of 13 percent reduction in the
NOx emission along with more accurate BMEP tracking in comparison with the reference (open-loop) system. Based on
the results, the engine output performance is modified, and the NOx concentration is reduced simultaneously. As the
proposed controller does not depend on the model, it can be easily used in the real-time implementation. In future work
we plan on using PD-FILC on the real engine using a fast response electrochemical NOx sensor.
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