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Abstract 

Control Systems of autonomous vehicles or Driver Assistant Control Systems always face 

uncertainties due to the in-vehicle and environmental disturbances. In addition, the steering ability 

for rear tires leads to more stability and more handling and maneuverability. In this paper the 

adaptive sliding mode control (ASME) strategy is employed to improve handling issues due to the 

road’s friction, which plays a key role in handling dynamics. . The proposed dynamic model used 

in this paper is simple and useful two-degree of freedom model. In this paper, two parallel ASMCs 

are used: one for positioning error and the other for angular error. The simulation are executed for 

two different road conditions with considering the hypercritical condition. To verify the designed 

controller, the controller is applied to the non-linear full vehicle model. The simulation results 

prove that the controller perfectly works for different road conditions. The controller is also robust 

against uncertainties such as road friction.    

Keywords: Autonomous Vehicle, Four-Wheel-Steering Vehicle, Vehicle Lateral Control, 

Adaptive Sliding Model Control 
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1. Introduction 

Autonomous vehicles, which is recently the subject of research and development of many well-

known car companies, is a driverless vehicle in which properties of traditional vehicles are 

preserved. Taking advantages of some technologies such as Lidar, GPS, radar and computer vision, 

autonomous vehicles can sense the environment. Vehicle’s control system interprets the obtained 

data and regarding the possible obstacles and street signs, navigates the vehicle in an appropriate 

path. One of the major problems in this field is the safet and security issues, particularly in diverse 

weather conditions. The vehicle should be able to retain its stability in any environmental 

condition. 

One approach for increasing the stability and enhancing the handling and maneuverability of 

vehicle is to use Four Wheel Steering (4WS) [1]. Rear steering in for 4WS will result in two control 

inputs (rear and front steering angle). Adding rear steering broadens the ranges of choices in 

designing the controller. In other words, in vehicles with one input for the controller, position and 

orientation errors should be eliminated, but in the case of 4WS vehicles, one controller is assigned 

for position error and another one for orientation error. 

Researchers have shown that the closed loop control design can significantly enhance the 

stability of 4WS vehicles. They have used numerous control rules in designing a 4WS vehicle. The 

authors of [2] have used optimal control rule to navigate the vehicle, and five models to establish 

the relationship between rear and front steering angle. In this models, rear steering angle can be 

proportionally related to front steering angle. In the model, the rear steering angle functions 

depending on front steering angle, longitudinal velocity, and yaw rate. In another model, rear 

steering angle is independent of front steering angle. In addition to [2] in which the optimal control 

rule is used, authors of [3] [4], and [5] have also taken the advantages of this rule. Moreover, [6] 

is used an optimal controller for yaw momentum and rear steering angle for 4WS. The designed 

control rule in [6] is effective in handling stability enhancement. However, the gain of steady state 

of yaw rate depends on the steering angle applied by the driver. Thus, the gain decreases in higher 

velocities. Consequently, understeering occurs and the responsibilities of driver increases. Due to 

the limitations of optimal controllers, [7-9], the optimal controller is integrated with robust 

controllers H∞ to achieve a better performance, particularly in higher velocities. The authors of 

[10] have also used IMC technique based on optimal controller H∞ and achieved more satisfying 

results. 
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Regardless of many issues, due to their better response and simpler implementation in empirical 

systems, PID controllers have attracted much interests. Fuzzification [11] and adaptation [12] of 

PID controller’s coefficients will simply result in a non-linear behavior in the controller. 

References [13], [14], and [15] have used a PI to control a 4WS among which the controller used 

in [13] is non-linear. 

The authors of [16] have controlled yaw angle in a 4WS using fuzzy logics. Moreover, [17] has 

used two fuzzy controllers to monitor the side slip angle and yaw rate. The authors of  [18] have 

controlled a 4WS using a neural fuzzy system and genetic algorithm. The use of an optimization 

algorithm in this fuzzy controller have yielded more satisfying results such as more accurate path 

tracking. 

Due to the changes of system parameters over time and some unknown parameters, using 

adaptive and robust control rules has better response in vehicles. Wakamatsu et al. [19] and 

Shiotsuka et al. [20] have used a feedback and feed-forward controller and the friction coefficient 

between tires and vehicle to design an adaptive controller for 4WS vehicles. Shiotsuka et al. [20] 

have also used the artificial neural networks to train a system to generate cornering forces of tires. 

The inputs of this system are velocity and friction coefficient between tires and the road. The 

authors of [21-24] have developed control systems that are robust against parameter changes and 

external disturbances such as crosswinds. In [23], a vehicle model with parameters that vary with 

time has been used. The longitudinal velocity in different times is provided to the system by a 

controller and, then, the model parameters change. 

Another method of designing robust controllers is to use sliding mode controllers that is able to 

control the system under uncertainties and external disturbances. Tires’ lateral stiffness, the 

friction between tires and the road, and disturbances such as crosswinds and robustness against 

different maneuvers are usually considered in sliding mode controllers for 4WS vehicles [25-32]. 

Reference [24] has integrated a state-feedback and a sliding mode controller using fuzzy rules. 

Reference [30] has used a fractional order sliding mode controller. The results of that research 

shows more system stability. Reference [33] has used an adaptive fuzzy sliding mode controller 

with Fuzzy Boundary Layer for controlling a 2WS autonomous vehicle. The authors of [31] and 

[32] have designed a fault-tolerant control using sliding mode controller. Reference [34] has used 

a non-linear model predictive control (MPC) to control a 4WS vehicle. In addition, some 

researchers have used the decoupling to design a controller independent of any motion [14, 15, 24, 

35-37]. 

In this paper, using two parallel controllers, the position and the angle of vehicle with respect 

to desired path as input are simultaneously controlled. In the next section, the dynamic model has 

been presented and the dynamic model based on position and angle errors is obtained. Then, 

controlling strategy and parallel adaptive sliding mode controllers are designed. In section 3, the 

definition of Lyapunov function and stability criteria, and the stability of adaptive controllers are 

studied. In section 4, the response of the system in different weather conditions in a sinusoidal 

maneuver is simulated. To simulate the proposed controller, the non-linear full vehicle model is 

employed. 

 

2. Modeling 

2.1. The bicycle model 
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In this paper, a simplified 2 degree-of-freedom vehicle model, which is known as bicycle model, 

is used for control development as shown in Figure 1. The model has two state variables such as 

yaw rate and sideslip angle. 

 

[Insert Figure 1] 

 

Assuming the longitudinal velocity of vehicle to be constant, and neglecting the roll, pitch, and 

bounce effects, the model can be obtained from the lateral dynamic equations as presented in Eq. 

1 [38].The parameters of model are also listed in Table 1. 

(1) 

β̇ = (−2μ
cf+cr

mVx
)β + (−1 + 2μ

lrcr−lrcr

mVx
2 ) r + (2μ

cf

mVx
)δf + (2μ

cf

mVx
)δr 

ṙ = (2μ
lrcr − lrcr

J
)β + (−2μ

cflf
2 + crlr

2

JVx
)r + (2μ

lfcf
J
)δf + (−2μ

lrcr
J
)δr 

 

[Insert Table 1] 

 

The linear tire model has been used in this dynamic vehicle model. The lateral tire forces are 

shown in the following equation. 

(2) 
Ff = αfcf

∗ = αfcfμ 

Ff = αrcr
∗ = αrcrμ 

where α is sideslip angle, c* is the nominal stiffness of tires, and μ is coefficient of friction. Taking 

into account the relationship between lateral velocity of vehicle and sideslip angle (Eq. 3), and the 

fact that yaw rate of vehicle is equal to derivation of yaw (Eq. 4), one can apply Eq.3 and Eq. 4 to 

Eq. 1 to obtain the bicycle model of vehicle with lateral position and yaw angle as degrees of 

freedom (Eq. 5).  

(3) β =  
ẏ

Vx
 

(4) r =  ψ̇ 

(5) 

ÿ = (−2μ
cf+cr

mVx
)ẏ + (−Vx + 2μ

lrcr−lfcf

mVx
)ψ̇ + (2μ

cf

m
)δf + (2μ

r

m
)δr 

ψ̈ = (2μ
lrcr − lfcf
JVx

)ẏ + (−2μ
cflf

2 + crlr
2

JVx
)ψ̇ + (2μ

lfcf
J
)δf + (−2μ

lrcr
J
)δr 

The vehicle model is subjected to some uncertainties, so the controller must be robust to achieve 

a much better performance. One of the most important uncertainties that affects both stability and 

handling is the coefficient of friction between tires and surface of the road. The value of coefficient 

of friction for different environmental conditions is shown in Table 2.  The minimum and 

maximum values of friction coefficient studied in this paper are 0.01 and 1, respectively. All 

coefficients of dynamic model are defined, based on these uncertainties, in Appendices I and II. 

Moreover, for the purpose of simulation, the average value of dry and icy road friction has been 
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used. For more feasibility of simulation of dry road, the friction coefficient was considered equal 

to one. 

 

[Insert Table 2] 

 

2.2. Vehicle model based on position and orientation error 

To study the dynamic behavior of vehicle and to design controller, it is more suitable that the 

dynamic equations be given in the form of a function of position and orientation error with respect 

to the road. Lateral position and orientation errors are schematically shown in Figure 2 and are 

defined as follows [39]: 

the distance of the C.G. of the vehicle from the center line of the lane 𝒆𝟏 

the orientation error of the vehicle with respect to the road 𝒆𝟐 

 

[Insert Figure 2] 

 

The relationships between the errors and the model’s degrees of freedom is explained by the 

following equation [39]: 

(6) 
ė1 = ẏ + Vx(ψ − ψd) = Vx(β + ψ −ψd) 

e2 = ψ− ψd 

Using equations 5 and 6, dynamic equations of 4WS vehicle as a function of position and 

orientation errors is obtained. 

(7) 
ë1 = a11ė1 + a12e2 + a13ė2 + b11δf + b12δr + d1ψ̇d 

ë2 = a21ė1 + a22e2 + a23ė2 + b21δf + b22δr + d2ψ̇d − ψ̈d 

where the value of coefficients are given in Appendix I. The input of this model with respect to 

global coordinates is defined as follows [39]: 

(8) 

Xdes = ∫ Vx

t

0

cos(ψd) dt 

Ydes = ∫ Vx

t

0

sin(ψd) dt 

As shown in Figure 2, the desired yaw rate is equal to the slope of the road function. Since yaw 

angle is small, Xdes is considered to be equal to Vx. 

(9) ψd = tan−1
Ẏdes

Ẋdes
≈
Ẏdes(t)

Vx
 

And finally the output as a function of global coordinates is yielded and is given in reference 

[39]. 

(10) 
𝑋 = 𝑋𝑑𝑒𝑠 − 𝑒1𝑠𝑖𝑛 (𝜓) 

𝑌 =  𝑌𝑑𝑒𝑠 + 𝑒1 𝑐𝑜𝑠(𝜓) 
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3. Controller design 

Sliding mode controller is a proper controller in confronting the uncertainties of controlling 

system of autonomous vehicles. It has some advantages, such as good performance when there 

exist un-modeled dynamics, non-sensitivity to parameter changes, excluding the external 

disturbances, and fast dynamic response [40]. Typically, this controller is used when there exist 

uncertainties in nonlinear systems. In this method of controller design, the range of uncertainty of 

parameters should be known. In fact, the tracking problem in an n-order system is converted to a 

one dimensional sliding surface stability problem. The main challenge of this method is chattering 

phenomenon, which is resolved by defining a suitable boundary layer [41]. The objective of this 

section is to design the sliding mode controller based on the dynamic system shown in Eq. 7. The 

controller strategy used in this article is shown in the block diagram of Figure 3. 

As shown in the Figure 3,, two adaptive sliding mode controllers are used in a parallel manner. 

One of them is responsible to eliminate the orientation error using rear steering control input to 

make the yaw angle of vehicle equal to the desired yaw angle of input. The other controller is 

responsible to eliminate the position error using front steering control input to navigate the vehicle 

on the input path. When these errors are simultaneously eliminated, the final output of vehicle 

should completely track the input path. 

 

[Insert Figure 3] 

 

3.1. ASMC controller design for position error 

Since the system is of 2 DOF, sliding surface is selected as follows: 

(11) s1 = (
d

dt
+ λ1) x̃1 = ė1 + λ1e1 

where 𝜆1 is positive, and  �̃�1 is the position error. 

(12) �̃�𝟏 = 𝒆𝟏 

Differentiating sliding surface yields 

(13) ṡ1 = (â11 + λ1)ė1 + â12e2 + â13ė2 + b̂11uf + b̂12ur + d̂1ψ̇d 

where uf and ur are rear (δr) and front (δf) steering angle. According to Reference [41], the 

best controlling rule for the position error is yielded from ṡ = 0. Therefore, putting ṡ1 equal to 

zero, the best controlling rule is obtained as 

(14) ufeq = −b̂11
−1(û1) 

where û1 is defined as 

(15) û1 = Â11ė1 + â12e2 + â13ė2 + b̂12ur + d̂1ψ̇d 

According to Reference [41], the sliding criterion is as follows 

(16) 1

2

d

dt
s1
2(t) ≤ η1|s1(t)| 

To satisfy this equation,  the extra term is added to the  ufeq as shown in Eq. 17.. 
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(17) uf = ufeq − k1b̂11
−1sign(s1) 

The bounds of k1 is provided in Reference [41] as 

(18) k1 > γ(F1 + η1) + (γ − 1)|û1| 

F1 is defined as 

(19) |f1
+ − f̂1| ≤ F1 

f̂1 is an approximation of f1. In fact, the upper bound of this approximation has been limited by 

F1. The relationships for f1, f̂1, and F1 are presented in Appendix II. 

In order to eliminate the chattering, saturate function is used, instead of Sign function. Saturate 

function is provided in Equation 20 and is shown in Figure 4. 

(20) sat (
s

φ
) =

{
 
 

 
 1                                          

s

φ
> 1

s

φ
                           − 1 <

s

φ
< 1 

−1                                    
s

φ
< −1

 

 

[Insert Figure 4] 

 

Finally, the equation for SMC controller is obtained as 

(21) 𝑢𝑓 = 𝑢𝑓𝑒𝑞 − 𝑘1�̂�11
−1𝑠𝑎𝑡(

𝑠1
𝜑1
) 

Although there are several advantages in using sliding mode controller, but in needs to know 

the upper and lower bounds of uncertainties to compute the switching gain. Thus, to avoid the 

computation of the upper bound of uncertainties, an adaptive rule for computation of sliding or 

switching gain is presented here. For this purpose, controlling signal is rewritten as [42]: 

(22) ufASMC = ufeq − θ̂1Ω1b̂11
−1sat(

s1
φ1
) 

where θ̂1 is switching gain and is updated using the following formula. 

(23) θ̇̂1(t) = Ω1|s1(t)| 

θ̂1(0) = 0 

where Ω1 is positive and constant. This constant allows us to select the adaptive velocity in an 

arbitrary manner. There are, however, some constraints which will be addressed in the proper part. 

 

 

3.2. ASMC controller design for orientation error 

Considering the fact that the system is of 2 degrees of freedom, the sliding surface is chosen as 

(24) 
s2 = (

d

dt
+ λ2) x̃2 = ė2 + λ1e2 
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where 𝜆2 is positive and �̃�2 is the position error 

(25) x̃2 = e2 

Differentiating from the sliding surface, we have 

(26) ṡ1 = â21ė1 + â22e2 + (â23 + λ2)ė2 + b̂21uf + b̂22ur + d̂2ψ̇d 

Similar to the previous controller, the best control is achieved when Eq.26 is set equal to zero. 

(27) ureq = −b̂22
−1(û2) 

where û1 is expressed as 

(28) û2 = â21ė1 + â22e2 + Â23ė2 + b̂21uf + d̂2ψ̇d 

According to Reference [41], the sliding surface is defined as 

(29) 1

2

d

dt
s2
2(t) ≤ η2|s2(t)| 

A term will be added to ufeq to satisfy this condition. 

(30) ur = ureq − k2b̂22
−1sign(s2) 

The bounds of k2 is obtained as 

(31) k2 > γ(F2 + η2) + (γ − 1)|û2| 

and similar to previous controller, F2 is defined as 

(32) |f2
+ − f̂2| ≤ F2 

The relationships between f2 ،f̂2 and F2 are presented in Appendix II. 

In order to eliminate the chattering, Sat function and boundary layer is used. Therefore, the final 

SMC control signal is obtained as 

(33) ur = ureq − k2b̂22
−1sat(

s2
φ2
) 

Again, adaptive controller rule is applied, and the control signal (22) is rewritten as 

(34) urASMC = ureq − θ̂2Ω2b̂22
−1sat(

s2
φ2
) 

where θ̂2 is switching gain and is updated using 

(35) 
θ̇̂2(t) = Ω2|s2(t)| 

θ̂2(0) = 0 

where Ω2 is a constant. This constant helps in choosing the adaptive velocity for switching gain 

arbitrarily. However, there are, again, some constraints, which are addressed in Section 4. 

 

 

4. Stability Analysis of the Designed ASMC Controller 

4.1. Stability Analysis of position error controller 

To analyze the controller designed for position error, the candidate Lyapunov function is chosen 

as 
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(36) 𝑉1 =
1

2
𝑠1
2 +

𝑏11�̂�11
−1

2
�̃�1
2 

where θ̃1  is defined as 

(37) θ̃1 = θ̂1 − θ1 

and θ1 is equal to k1 obtained from the SMC controller 

(38) θ1 = k1 ≥ γ(F1 + η1) + (γ − 1)|û1| 

To analyze the Lyapunov stability, the candidate Lyapunov function is differentiated 

V̇1 = s1ṡ1 + b11b̂11
−1θ̃1θ̇̃1 

= s1(A11ė1 + a12e2 + a13ė2

+ b11(−b̂11
−1){Â11ė1 + â12e2 + â13ė2 + b̂12ur + d̂1ψ̇d + θ̂1Ω1sign(s1)}

+ b12ur + d1ψ̇d) + b11b̂11
−1(θ̂1 − θ1)Ω1|s1(t)| 

≤ |A̅11ė1 + a̅12e2 + a̅13ė2 + b̅12ur + d̅1ψ̇d||s1(t)| + |1 − b11b̂11
−1||û1||s1(t)|

− b11b̂11
−1θ̂1Ω1|s1(t)| + b11b̂11

−1θ̂1Ω1|s1(t)| − b11b̂11
−1θ1Ω1|s1(t)| 

 

using Appendix II, we have 

V̇1 ≤ F1|s1(t)| + |1−γ
−1||û1||s1(t)|−γ

−1(γ(F1 + η1) + (γ − 1)|û1|)Ω1|s1(t)| 

V̇1 ≤ (1 − Ω1)(F1 + |1−γ
−1||û1|)|s1(t)| − η1Ω1|s1(t)| 

Since η1 is positive, the above inequality is satisfied, only when Ω1 is larger than 1. Therefore, 

we have 

(39) Ω1 ≥ 1       →        V̇1 ≤ 0 

 

4.2. Stability Analysis of Orientation Error Controller 

The Lyapunov function for this controller is similar to the previous section. That is 

(40) V2 =
1

2
s2
2 +

b22b̂22
−1

2
θ̃2
2 

where θ̃2 is defined as 

(41) θ̃2 = θ̂2 − θ2 

and θ2 is equal to k2 obtained from the SMC controller. 

(42) θ2 = k2 ≥ γ(F2 + η2) + (γ − 1)|û2| 

To analyze the Lyapunov stability, the candidate Lyapunov function is differentiated 

�̇�2 = 𝑠2�̇�2 + 𝑏22�̂�22
−1�̃�2�̇̃�2 
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 = 𝑠2(𝑎21�̇�1 + 𝑎22𝑒2 + 𝐴23�̇�2
+ 𝑏22(−�̂�22

−1){�̂�21�̇�1 + �̂�22𝑒2 + �̂�23�̇�2 + �̂�21𝑢𝑓 + �̂�2�̇�𝑑 + 𝜃2𝛺2𝑠𝑖𝑔𝑛(𝑠2)}

+ 𝑏21𝑢𝑓 + 𝑑2�̇�𝑑) + 𝑏22�̂�22
−1(�̂�2 − 𝜃2)𝛺2|𝑠2(𝑡)| 

 ≤ |�̅�21�̇�1 + �̅�22𝑒2 + �̅�23�̇�2 + �̅�21𝑢𝑓 + �̅�2�̇�𝑑||𝑠2(𝑡)| + |1 − 𝑏22�̂�22
−1||�̂�2||𝑠2(𝑡)|

− 𝑏22�̂�22
−1𝜃2𝛺2|𝑠2(𝑡)| + 𝑏22�̂�22

−1𝜃2𝛺2|𝑠2(𝑡)| − 𝑏22�̂�22
−1𝜃2𝛺2|𝑠2(𝑡)| 

 

Using Appendix II, we have 

V̇2 ≤ F2|s2(t)| + |1−γ
−1||û2||s2(t)|−γ

−1(γ(F2 + η2) + (γ − 1)|û2|)Ω1|s2(t)| 

V̇1 ≤ (1 − Ω2)(F2 + |1−γ
−1||û2|)|s2(t)| − η2Ω2|s2(t)| 

 

Since η1 is positive, the above inequality is satisfied, only when Ω1 is larger than 1. Therefore, 

we have 

(43) Ω2 ≥ 1       →        V̇2 ≤ 0 

 

5. Results and Discussion 

Generally, the controller output signals that are rear and front steering angles was designed as 

follows 

 s1 = ė1 + λ1e1 

ufASMC = −b̂11
−1(Â11ė1 + â12e2 + â13ė2 + b̂12ur + d̂1ψ̇d) − θ̂1Ω1b̂11

−1sat(
s1
φ1
) 

θ̇̂1(t) = Ω1|s1(t)| 

θ̂1(0) = 0 

 s2 = ė2 + λ2e2 

urASMC = −b̂22
−1(â21ė1 + â22e2 + Â23ė2 + b̂21uf + d̂2ψ̇d) − θ̂2Ω2b̂22

−1sat(
s2
φ2
) 

θ̇̂2(t) = Ω2|s2(t)| 

θ̂2(0) = 0 

where λ1 ،Ω1 ،λ2 و   Ω2 are adjustable controller design parameters. In addition, λ coefficients are 

larger than zero, and Ω coefficients are larger than 1 and determine the adaption velocity. 

The input maneuver is sinusoidal and we have 
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(44) 𝑦𝑟𝑒𝑓(𝑡) =  

{
 
 

 
 0                            0 < 𝑡 ≤

𝜋

2

𝑊 𝑠𝑖𝑛(𝑡)            
𝜋

2
< 𝑡 ≤

7𝜋

2

0                                   𝑡 >
7𝜋

2

 

where W is equal to 3.74 (the width of each lane). The sinusoidal curvature of the maneuver has 

been plotted in Figure 5. 

 

[Insert Figure 5] 

 

With applying this input, obtaining the suitable input yaw rate, and considering the block 

diagram shown in Figure 3, it is possible to obtain the output of the system for two different 

weather conditions and a velocity of 40 m/s based on the designed controller. The equations of 

motion in the CarSim math models are valid for full nonlinear 3D motions of rigid bodies. It is not 

required to know the details of the linkages and gears in the suspensions and steering, hence, 

reducing the amount of information needed to obtain accurate predictions. The components that 

have significant effect on handling, braking, and acceleration are represented with nonlinear tables 

of measurable data. Figure 6 illustrate the output of the system for two different road frictions (µ 

= 0.1,1). Inset (a), in figure 6, indicates the vehicle’s path and the reference path. Insets (b) and 

(c), in figure 6, indicate the yaw angle and lateral position errors. Insets (d) and (e), respectively, 

indicate the sliding surface of two parallel ASMC controllers. Insets (f)-(i) show vehicle side slip 

angle, yaw rate, and yaw and roll angle. Also, Insets (j) and (k), respectively, indicate the rear and 

front steering angle as outputs of the controller for fictions µ = 1 and µ = 0.1. 

As it is shown in Inset (a) of Figure 6, in the case of a friction equal to one, the vehicle perfectly 

tracks the desired path. This prefect tracking can be induced from the low value of lateral position 

(b) and orientation errors (c). For icy road with friction value of 0.1, the system shows acceptable 

tracking. The vehicle only deviates from the path at its maximum curvatures. As it can be seen 

from Inset (c), the orientation error has variations which result in deviations of vehicle from the 

desired path. However, since the error range is short (0.2 degree), this issue is not significant in 

path tracking. Insets (d) and (e) show that both sliding surfaces, in the absence of chattering, 

converge to zero. The range of these surfaces is higher for lower frictions. In regard to appropriate 

performance of the controller in each friction coefficient, the side slip, yaw, and roll angle, and 

yaw rate are roughly equal. The output of the controller is considered as the input of the steering 

system of the autonomous vehicle, which has a low value for both road frictions due to the high 

longitudinal velocity of vehicle. The ratio of values of rear steering angle to front steering angle is 

appropriate. If this ratio become higher than this, due to the high longitudinal velocity and critical 

maneuver, the possibility of unstability exists. Therefore, in addition to lyapanov stability analysis, 

this ratio indicates a suitable performance of the proposed controller. The presence of variations 

in the steering angle indicates the efforts of the controller to minimize the lateral position and 

orientation errors. The control strategy presented in this paper, which employs two parallel 

controllers, is applicable to control a real 4WS autonomous vehicle. 
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[Insert Figure 6] 

 

 

Conclusions 

In this paper, an adaptive sliding mode controller has been designed to track the path of an 

autonomous 4WS vehicle. The controller strategy of this system includes parallel controlling of 

position and orientation errors of the vehicle. The simplified bicycle model was employed as a 

plant model for control development purposes. Also, for the purpose of simulation of control 

strategy, the non-linear full vehicle model has been employed. In addition, with the help of defining 

Lyapunov functions, the stability of the system has been examined. The results of simulation of 

this controller show favorable tracking of the path for two different road condition (µ = 1 and µ = 

0.1). Considering the stability analysis based on the Lyapanov theorem, the proposed controller is 

able to resist against parameter variations such as velocity and friction variations and the 

uncertainties resulting from non-linear model. Further researches can focus on addressing external 

disturbances, such as crosswinds, analyzing simultaneous longitudinal and lateral performance of 

the vehicle, using a fuzzy boundary layer to reduce the controlling signal, eliminate the chattering, 

and increase the accuracy of uncertainties, and applying the controller to a real time system. 

 

 
References 

 

[1] F. Fahimi, "Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles," 

Vehicle System Dynamics, vol. 51, pp. 360-376, 2013. 

[2] J. Sridhar and H. Hatwal, "A comparative study of four wheel steering models using the inverse 

solution," Vehicle System Dynamics, vol. 21, pp. 1-18, 1992. 

[3] L. Palkovics, "Effect of the controller parameters on the steerability of the four wheel steered car," 

Vehicle System Dynamics, vol. 21, pp. 109-128, 1992. 

[4] A. HIGUCHI and Y. SAITOH, "Optimal control of four wheel steering vehicle," Vehicle System 

Dynamics, vol. 22, pp. 397-410, 1993. 

[5] Y. H. Cho and J. Kim, "Design of optimal four-wheel steering system," Vehicle System Dynamics, 

vol. 24, pp. 661-682, 1995. 

[6] L. Huashi, "Integrated rear wheel steering angle and yaw moment optimal control of four-wheel-

steering vehicle," in 2010 Chinese Control and Decision Conference, 2010, pp. 2490-2493. 

[7] L. Gianone, L. Palkovics, and J. Bokor, "Design of an active 4WS system with physical 

uncertainties," Control Engineering Practice, vol. 3, pp. 1075-1083, 1995. 

[8] S.-S. You and Y.-H. Chai, "Multi-objective control synthesis: an application to 4WS passenger 

vehicles," Mechatronics, vol. 9, pp. 363-390, 1999. 

[9] Z. Rong-hui, C. Guo-ying, W. Guo-qiang, J. Hong-guang, and C. Tao, "Robust optimal control 

technology for four-wheel steering vehicle," in 2007 International Conference on Mechatronics 

and Automation, 2007, pp. 1513-1517. 

[10] M. Canale and L. Fagiano, "Stability control of 4WS vehicles using robust IMC techniques," 

Vehicle System Dynamics, vol. 46, pp. 991-1011, 2008. 

[11] Z. Civelek, M. Lüy, E. Çam, and N. Barışçı, "Control of Pitch Angle of Wind Turbine by Fuzzy 

Pid Controller," Intelligent Automation & Soft Computing, vol. 22, pp. 463-471, 2016. 

[12] R. Sharma, V. Kumar, P. Gaur, and A. Mittal, "An adaptive PID like controller using mix locally 

recurrent neural network for robotic manipulator with variable payload," ISA transactions, vol. 62, 

pp. 258-267, 2016. 



13 

 

[13] R. Marino, S. Scalzi, and F. Cinili, "Nonlinear PI front and rear steering control in four wheel 

steering vehicles," Vehicle System Dynamics, vol. 45, pp. 1149-1168, 2007. 

[14] R. Marino and F. Cinili, "Input–output decoupling control by measurement feedback in four-wheel-

steering vehicles," IEEE Transactions on Control Systems Technology, vol. 17, pp. 1163-1172, 

2009. 

[15] R. Marino and S. Scalzi, "Asymptotic sideslip angle and yaw rate decoupling control in four-wheel 

steering vehicles," Vehicle System Dynamics, vol. 48, pp. 999-1019, 2010. 

[16] R. Kazemi, M. K. Bahaghighat, and K. Panahi, "Yaw moment control of four wheel steering vehicle 

by fuzzy approach," in Industrial Technology, 2008. ICIT 2008. IEEE International Conference 

on, 2008, pp. 1-7. 

[17] z. j. Wang shufeng, "The Research and Application of Fuzzy Control in Four-wheel-steering 

Vehicle," presented at the 2010 Seventh International Conference on Fuzzy Systems and 

Knowledge Discovery (FSKD 2010), 2010. 

[18] S. Wu, E. Zhu, M. Qin, H. Ren, and Z. Lei, "Control of Four-Wheel-Steering Vehicle Using GA 

Fuzzy Neural Network," in Intelligent Computation Technology and Automation (ICICTA), 2008 

International Conference on, 2008, pp. 869-873. 

[19] K. Wakamatsu, Y. Akuta, M. Ikegaya, and N. Asanuma, "Adaptive yaw rate feedback 4WS with 

tire/road friction coefficient estimator," Vehicle System Dynamics, vol. 27, pp. 305-326, 1997. 

[20] T. Shiotsuka, A. Nagamatsu, and K. Yoshida, "Adaptive control of 4WS system by using neural 

network," Vehicle System Dynamics, vol. 22, pp. 411-424, 1993. 

[21] S. Horiuchi, N. Yuhara, and A. Takei, "Two degree of freedom/H∞ controller synthesis for active 

four wheel steering vehicles," Vehicle System Dynamics, vol. 25, pp. 275-292, 1996. 

[22] T. Akita, K. Satoh, and M. C. Gaunt, "Development of 4WS Control Algorithm for a SUV," SAE 

Technical Paper 0148-7191, 2002. 

[23] M. Li and Y. Jia, "Decoupling control in velocity-varying four-wheel steering vehicles with H∞ 

performance by longitudinal velocity and yaw rate feedback," Vehicle System Dynamics, vol. 52, 

pp. 1563-1583, 2014. 

[24] M. Li and Y. Jia, "Precompensation decoupling control with H∞ performance for 4WS velocity-

varying vehicles," International Journal of Systems Science, pp. 1-12, 2016. 

[25] P. I. Ro and H. Kim, "Improvement of high speed 4-WS vehicle handling performance by sliding 

mode control," in American Control Conference, 1994, 1994, pp. 1974-1978. 

[26] M. Akar and J. C. Kalkkuhl, "Lateral dynamics emulation via a four-wheel steering vehicle," 

Vehicle System Dynamics, vol. 46, pp. 803-829, 2008. 

[27] T. Hiraoka, O. Nishihara, and H. Kumamoto, "Automatic path-tracking controller of a four-wheel 

steering vehicle," Vehicle System Dynamics, vol. 47, pp. 1205-1227, 2009. 

[28] A. Alfi and M. Farrokhi, "Hybrid state-feedback sliding-mode controller using fuzzy logic for four-

wheel-steering vehicles," Vehicle System Dynamics, vol. 47, pp. 265-284, 2009. 

[29] F. Du, J.-s. Li, L. Li, and D.-h. Si, "Robust control study for four-wheel active steering vehicle," in 

Electrical and Control Engineering (ICECE), 2010 International Conference on, 2010, pp. 1830-

1833. 

[30] J. Tian, N. Chen, J. Yang, and L. Wang, "Fractional order sliding model control of active four-

wheel steering vehicles," in Fractional Differentiation and Its Applications (ICFDA), 2014 

International Conference on, 2014, pp. 1-5. 

[31] M. Koh, M. Norton, and S. Khoo, "Robust Fault-Tolerant Leader-Follower Control of Four-Wheel 

Steering Mobile Robots Using Terminal Sliding Mode," Australian Journal of Electrical and 

Electronics Engineering, vol. 9, pp. 247-253, 2012. 

[32] B. Li, H. Du, and W. Li, "Fault-tolerant control of electric vehicles with in-wheel motors using 

actuator-grouping sliding mode controllers," Mechanical Systems and Signal Processing, vol. 72, 

pp. 462-485, 2016. 

[33] A. Norouzi, R. Kazemi, and S. Azadi, "Vehicle lateral control in the presence of uncertainty for 

lane change maneuver using adaptive sliding mode control with fuzzy boundary layer," 



14 

 

Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control 

Engineering, p. 0959651817733222, 2017. 

[34] A. Nizard, B. Thuilot, R. Lenain, and Y. Mezouar, "Nonlinear Path Tracking Controller for Bi-

Steerable Vehicles in Cluttered Environments," IFAC-PapersOnLine, vol. 49, pp. 19-24, 2016. 

[35] J. Ackermann, "Robust decoupling, ideal steering dynamics and yaw stabilization of 4WS cars," 

Automatica, vol. 30, pp. 1761-1768, 1994. 

[36] B. Yang, M. Wan, and Q. Sun, "Control strategy for four-wheel steering vehicle handling stability 

based on partial decoupling design," in Computational Science and Optimization (CSO), 2010 

Third International Joint Conference on, 2010, pp. 265-267. 

[37] M. Li, Y. Jia, and F. Matsuno, "Attenuating diagonal decoupling with robustness for velocity-

varying 4WS vehicles," Control Engineering Practice, vol. 56, pp. 49-59, 2016. 

[38] J. Ackermann, Robust control: Systems with uncertain physical parameters: Springer Science & 

Business Media, 2012. 

[39] R. Rajamani, Vehicle dynamics and control: Springer Science & Business Media, 2011. 

[40] V. I. Utkin, "Sliding mode control design principles and applications to electric drives," IEEE 

transactions on industrial electronics, vol. 40, pp. 23-36, 1993. 

[41] J.-J. E. Slotine and W. Li, Applied nonlinear control vol. 199: prentice-Hall Englewood Cliffs, NJ, 

1991. 

[42] O. Barambones, A. Garrido, F. Maseda, and P. Alkorta, "An adaptive sliding mode control law for 

induction motors using field oriented control theory," in 2006 IEEE Conference on Computer Aided 

Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE 

International Symposium on Intelligent Control, 2006, pp. 1008-1013. 

[43] G. Tagne, R. Talj, and A. Charara, "Design and Comparison of Robust Nonlinear Controllers for 

the Lateral Dynamics of Intelligent Vehicles," IEEE Transactions on Intelligent Transportation 

Systems, vol. 17, pp. 796-809, 2016. 

Appendix I- Coefficient of vehicle 2-DOF motion equations 
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Appendix II- Upper and lower bounds of uncertainties for controller design  
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Figure Captions List 

 

Fig. 1 Vehicle 2-DOF bicycle model 

Fig. 2 Global and body fixed coordinate relationship and schematic of e1 and e2 [39] 

Fig. 3 Block diagram of proposed control low 

Fig. 4 Saturate function behavior 

Fig. 5 Desired Path input 
Fig. 6 System response for µ = 1 and µ = 0.1 
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Table Caption List 

 

Table 1 Parameters of vehicle [43] 

Table 2 Friction Coefficient for different road condition 
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Table 1: 

 

 

Unit Value Variable name Symbol 

- [μ1-μ2] Road friction coefficient μ 

[kg] 1421 Mass M 

]2kg.m[ 2570 Yaw moment of inertia J 
[m] 1.195 Front axle-COG distance 𝑙𝑓 

[m] 1.513 Rear axle-COG distance 𝑙𝑟 

[N/rad] 170550 Cornering stiffness of front tire 𝐶𝑓 

[N/rad] 137844 Cornering stiffness of rear tire 𝐶𝑟 
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Table 2: 

 

Nominal Value Coefficient of adhesion Pavement type 

1.05 0.9-1.2 Dry 

0.695 0.5-0.89 Wet 

0.345 0.2-0.49 Snow 

0.1 0.01-0.19 Ice 

 

  



21 

 

Figure 1: 
 

 
 

 

 

  



22 

 

Figure 2: 

 
 

 

  



23 

 

Figure 3: 
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