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Motivation - Diesel engine-out emission
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Motivation - Emission control using feedback control

Benefits of using engine-out emission feedback: *

@ Modify calibration in the real driving cycle to meet real driving cycle emission standard
@ Decrease the effort of engine calibration

@ Emission reduction besides using the after-treatment systems

v
Desired emission Emission reduction/ Emission sensor
and performance > > Engine performance ———— Diesel engine ———> and estimation [~
Reference Error| e - gine
level control modification output process

Emission and performance feedback

1
Frédéri Tschanz et al, “Feedback control of particulate matter and nitrogen oxide emissions indiesel engines” Control engineering practice, 2013.
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Motivation - world energy usage
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2|EA (2020), World Energy Balances: Overview, IEA, Paris
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Motivation - world energy usage

Total final consumption: 2018 change by source and region in OECD
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Total final consumption: 2018 change by source and region in OECD
(Organization for Economic Co-operation and Development)?

2|EA (2020), World Energy Balances: Overview, IEA, Paris
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Motivation - Hybridization and electrification

Battery electric vehicles . Battery electric vehicles
late adoption

early adoption

Heavy-duty trucks (HDT)

Fossil fuels
(predominantly diesel)
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Key points: *

@ In the best scenario,
battery-electric commercial
vehicles could reach
(Europe):

» 5% for heavy-duty truck

» 31% for medium-duty
truck (Europe)

» 34% for light-duty truck

@ Low uptake for heavy-duty
trucks especially for US and
China

Heid, Bernd, et al. "What's Sparking Electric-Vehicle Adoption in the Truck Industry?.” McKinsey & Company, Sept. 2017.
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Scope of the presentation

Part I: Model order reduction using Machine Part Il: NOx reduction using learning-based

Learning to model emission controller
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Part I: Diesel engine experimental setup
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Part I: Modeling procedure based on SVM
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Part I: Model order reduction: Steady-state NOx prediction
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Part I: NOx model- FOM, HOM, and LOM- ANN vs SVM

Performance of the NO, full-order model (FOM), high-order model (HOM), and low-order model (LOM).

Model type FOM HOM LOM
Number of features 34 29 9
Training method SVM ANN SVYM ANN SVM ANN
Emax, o (PPM) 19.6888 25.6473 19.5689 27.3405 66.02 579259
Evnax. s (PPM) 21.660 60.7375 21,6665 477841 2291 602836
R2 0.9934 0.9969 0.9934 0.9837 0.9490 0.9891
R2 0.9725 0.9775 0.9725 0.9664 0.9677 0.9760

| J(Enae. R:)(pPm) 21.0106 39.9824 20.9490 37.0706 40.58 5467 |
Training time (ms) 9.47 240.6 11.07 202.0 13.10 194.5

Performance of the BMEP full-order model (FOM), high-order model (HOM), and low-order model (LOM).

Model type FOM HOM LOM

Number of features 34 20 6

Training method SVM ANN SVM ANN SVM ANN

Ermax,(ppm) 0.3560 0.4006 0.3526 0.3859 0.810 0.5435

E nax. s (PPM) 0.3513 0.4484 0.3477 0.4151 0.2998 0.4732

Rfr 0.9978 0.9987 0.9978 0.9953 0.9947 0.9961

Ré 0.9957 0.9959 0.9957 0.9961 0.9962 0.996

[gEmm,Rl)(ppm) 0.3548 0.4250 0.3513 0.4020 0.4952 0.5091 |

Training time (ms) 359 199.8 9.2 218.0 9.5 2147
SAE International® Machine Learning-Based Diesel Engine-Out Emissions Model and Control Using the Learning-
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Part I: NOx and BMEP Control Oriented Model
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Part I: Emission and performance Control Oriented Model (COM)
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Part I: summary

e Correlation-based model order
reduction:

e Two model for NOx and BMEP:

* High accuracy of the high-order
mode

* Acceptable accuracy of low-order
mode

* NOx and BMEP models are valid for
large range of operating points

 CO and HC model:

* limited operation points

e Control oriented model:
e BMEP, NOx, UHC and CO

Published article:

W) Check for updates

Standard Article

A correlation-based model order
reduction approach for a diesel engine
NO, and brake mean effective
pressure dynamic model using
machine learning

Armin Norouzi(®, Masoud Aliramezani and Charles Robert Koch

International | of Engine Research
=19

IMechE 2020

Article reuse guidelines:
agepub.com/journals-permissions

DOI: 10.1177/1468087420936949

journals sagepub.com/homejer

®SAGE
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Part ll: learning-based controller

* |[terative Learning Control*:

 |[LC is used to improve the tracking performance of systems with
repeated dynamics

* |LC uses previous control inputs and errors to generate new control
input:

* Key benefits-:
* Model-free design
e Simple structure
* Add-on controller

40wens, David H. “Iterative learning control: an optimization paradigm,” Springer, 2015.
5Xu, Jian-Xin, et. al. “Real-time iterative learning control: design and applications.” Springer Science & Business Media, 2008.
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Part Il: Plug-in Iterative Learning Controller with parallel structure

1
Ujs1(2) = Uj(2) + PE;(2) + Do—— Ej(2)
"""""""""""""""" ILC
»Memory— L
Memory %é‘f Q LG
e t  — 1 |
R e u 11 Y
> ] > PID = \] Plantf——
_ I -1 |
Uej(z) = (Kp+ 7= =7 + Ka(l = 277) Ej(2) Uj(z) =Urrc,j(2) + Ue,;(2)
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Part Il: Plug-in ILC for NOx reduction and BMEP tracking (ILC+PID)
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Part II: Plug-in ILC for NOx reduction and BMEP tracking- Results and Discussions

—e=NO, [5%] =0=NO, [10%]
~a=CO0 5%] =a=-C0 [10%]
U HC [5%) = =U HC [10%]

-
o
T

o
[
/
’
*

o

o
[ ]
[ ]
®
[ ]

emission change with controller [%)]

-
-
-___.—
-— -

o
*
I

I~
a
(o]
-~

8 9 |10 11 12 |13
BMEP [bar]

NO.Reduction vs CO and UHC change in steady state
for both 5 percent and 10 percent NOreduction goal

SAE International®

o . Machine Learning-Based Diesel Engine-Out Emissions Model and Control Using the Learning-
SAE WCX Digital Summit

Based Control Technique



Part ll: Summary

* Learning-based controller design,
* NOx reduction levels while maintaining the desired engine load,
* Advantage of considering UHC and CO in NOx reduction strategy.

Published article:

2020 IEEE Conference on Control Technology and Applications (CCTA)
August 24-26, 2020. Montréal, Canada

Machine Learning-based Diesel Engine-Out NOx Reduction Using a
plug-in PD-type Iterative Learning Control

Armin Norouzi*, David Gordon®, Masoud Aliramezani*, Charles Robert Koch*
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Future study- Updated experimental setup
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Future study: Experimental results
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NOx Concentration [ppm]

Crank Angle [deg]

Future study: GT-power modeling for hybrid emission modeling
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Questions?

University of Alberta 5. FACULTY OF (3] UNIVERSITY OF
(Email: norouziy@ualberta.ca) é UENlI\\IIER!s”Y OFEARLIIBL\AE @ ALBERTA

EDMONTON-ALBERTA-CANADA
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