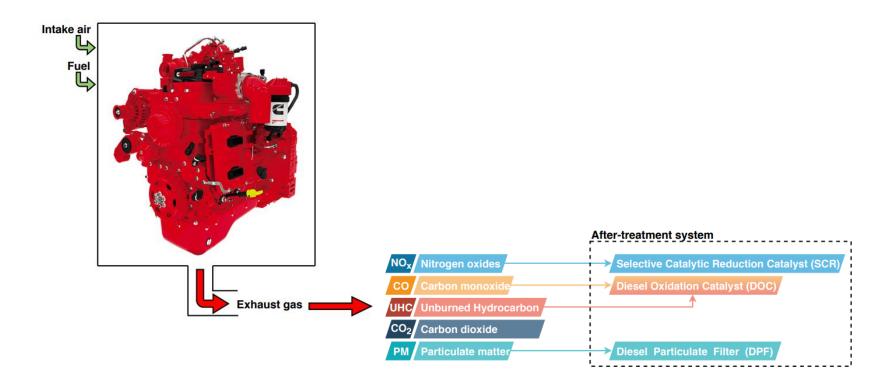




## Machine Learning-Based Diesel Engine-Out Emissions Model and Control Using the Learning-Based Control Technique

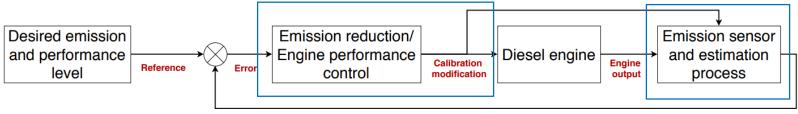
A. Norouzi, M. Shahbakhti, and C.R. Koch





#### Benefits of using engine-out emission feedback: <sup>1</sup>

- Modify calibration in the real driving cycle to meet real driving cycle emission standard
- Decrease the effort of engine calibration
- Emission reduction besides using the after-treatment systems

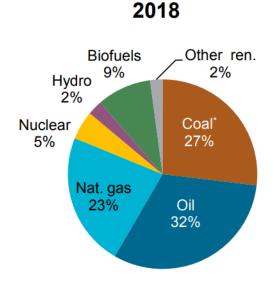


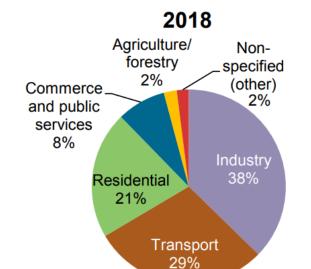
Emission and performance feedback

 $\square$ 

<sup>&</sup>lt;sup>L</sup> Frédéri Tschanz et al, "Feedback control of particulate matter and nitrogen oxide emissions indiesel engines" Control engineering practice, 2013.

#### Motivation - world energy usage



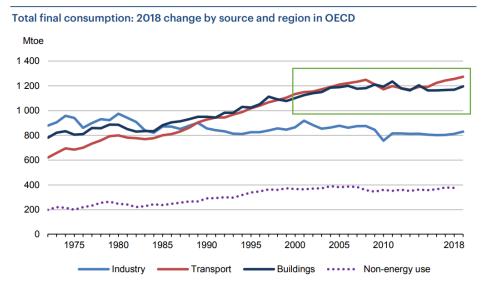


#### Total energy supply by fuel<sup>2</sup>

World total final consumption by sector<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> IEA (2020), World Energy Balances: Overview, IEA, Paris

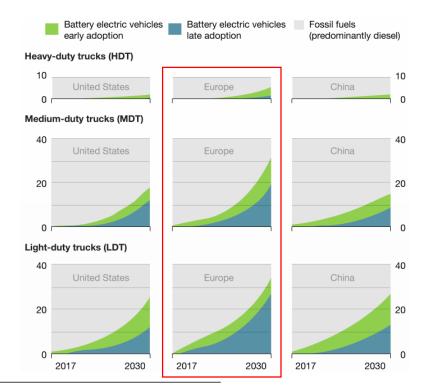
#### Motivation - world energy usage



Total final consumption: 2018 change by source and region in OECD (Organization for Economic Co-operation and Development)<sup>2</sup>

<sup>&</sup>lt;sup>2</sup> IEA (2020), World Energy Balances: Overview, IEA, Paris

#### **Motivation - Hybridization and electrification**



#### Key points: <sup>3</sup>

- In the best scenario, battery-electric commercial vehicles could reach (Europe):
  - ▶ 5% for heavy-duty truck
  - 31% for medium-duty truck (Europe)
  - ► 34% for light-duty truck
- Low uptake for heavy-duty trucks especially for US and China

<sup>3</sup>Heid, Bernd, et al. "What's Sparking Electric-Vehicle Adoption in the Truck Industry?." McKinsey & Company, Sept. 2017.

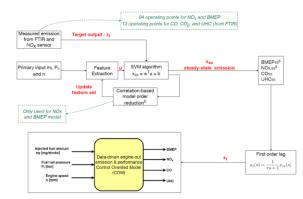
 $\square$ 

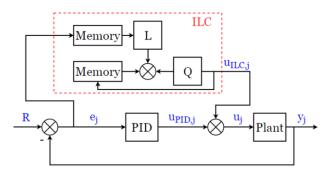
 $\Box$ 

Part I: Model order reduction using Machine

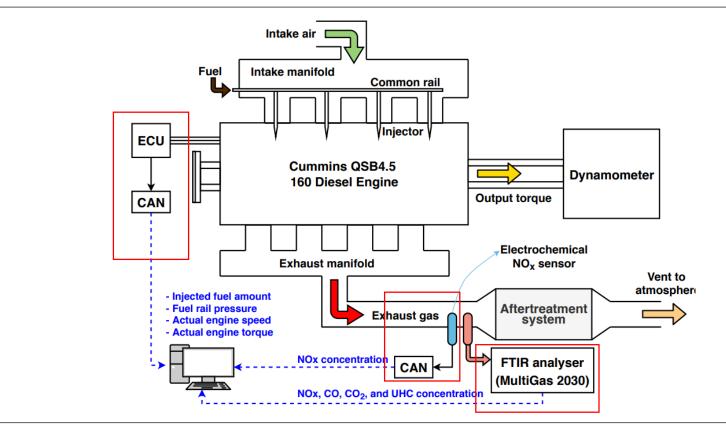
Learning to model emission

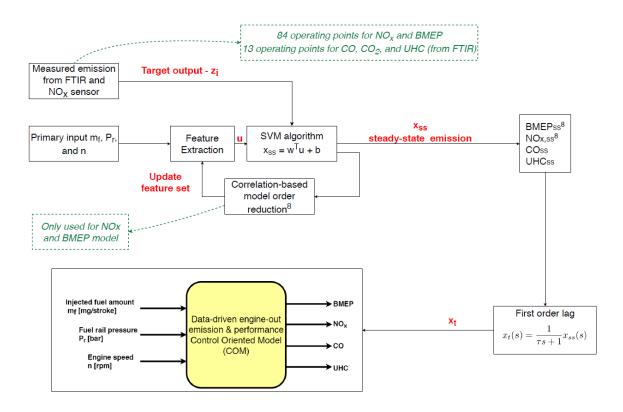
Part II: NOx reduction using learning-based controller





#### Part I: Diesel engine experimental setup





 $\Box$ 

#### Part I: Model order reduction: Steady-state NOx prediction



Maximum error ( $R^2$ ), squared correlation coefficient ( $R^2$ ), and cost function (J( $E_{max}$ ,  $R^2$ )) vs number of features

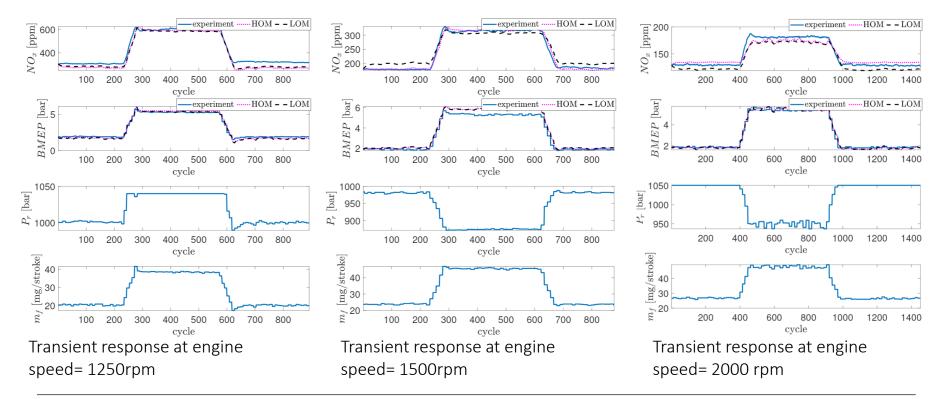
#### Part I: NOx model- FOM, HOM, and LOM- ANN vs SVM

| Model type                 | FOM     |         | HOM     |         | LOM    |         |
|----------------------------|---------|---------|---------|---------|--------|---------|
| Number of features         | 34      |         | 29      |         | 9      |         |
| Training method            | SVM     | ANN     | SVM     | ANN     | SVM    | ANN     |
| E <sub>max, tr</sub> (ppm) | 19.6888 | 25.6473 | 19.5689 | 27.3405 | 66.02  | 57.9259 |
| E <sub>max, ts</sub> (ppm) | 21.660  | 60.7375 | 21.6665 | 47.7841 | 22.91  | 60.2836 |
|                            | 0.9934  | 0.9969  | 0.9934  | 0.9837  | 0.9490 | 0.9891  |
| $R_{tr}^2$<br>$R_{ts}^2$   | 0.9725  | 0.9775  | 0.9725  | 0.9664  | 0.9677 | 0.9760  |
| $I(E_{max}, R^2)$ (ppm)    | 21.0106 | 39.9824 | 20.9490 | 37.0706 | 40.58  | 54.67   |
| Training time (ms)         | 9.47    | 240.6   | 11.07   | 202.0   | 13.10  | 194.5   |

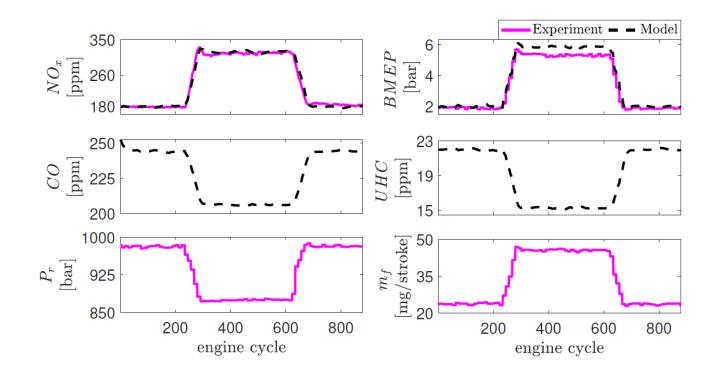
#### Performance of the BMEP full-order model (FOM), high-order model (HOM), and low-order model (LOM).

| Model type                                          | FOM    |        | HOM    |        | LOM    |        |
|-----------------------------------------------------|--------|--------|--------|--------|--------|--------|
| Number of features                                  | 34     |        | 20     |        | 6      |        |
| Training method                                     | SVM    | ANN    | SVM    | ANN    | SVM    | ANN    |
| E <sub>max, tr</sub> (ppm)                          | 0.3560 | 0.4006 | 0.3526 | 0.3859 | 0.810  | 0.5435 |
| E <sub>max, ts</sub> (ppm)                          | 0.3513 | 0.4484 | 0.3477 | 0.4151 | 0.2998 | 0.4732 |
|                                                     | 0.9978 | 0.9987 | 0.9978 | 0.9953 | 0.9947 | 0.9961 |
| $\begin{array}{c} R_{tr}^2 \\ R_{ts}^2 \end{array}$ | 0.9957 | 0.9959 | 0.9957 | 0.9961 | 0.9962 | 0.996  |
| $J(E_{max}, R^2)$ (ppm)                             | 0.3548 | 0.4250 | 0.3513 | 0.4020 | 0.4952 | 0.5091 |
| Training time (ms)                                  | 35.9   | 199.8  | 9.2    | 218.0  | 9.5    | 214.7  |

#### Part I: NOx and BMEP Control Oriented Model



#### Part I: Emission and performance Control Oriented Model (COM)



#### Part I: summary

 $\square$ 

- Correlation-based model order reduction:
  - Two model for NOx and BMEP:
    - High accuracy of the high-order mode
    - Acceptable accuracy of low-order mode
    - NOx and BMEP models are valid for large range of operating points
- CO and HC model:
  - limited operation points
- Control oriented model:
  - BMEP, NOx, UHC and CO

|                                                                                                                       | ينغو                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard Article                                                                                                      | International Journa<br>ENGINE RES                                                                                                                                                               |
| A correlation-based model order<br>reduction approach for a diesel engine<br>NO <sub>x</sub> and brake mean effective | International J of Engine Research<br>1–19<br>© IMechE 2020<br>Article reuse guidelines:<br>sagepub.com/journals-permissi<br>DOI: 10.1177/146897240346<br>journals.sagepub.com/home/jer<br>©SAGE |

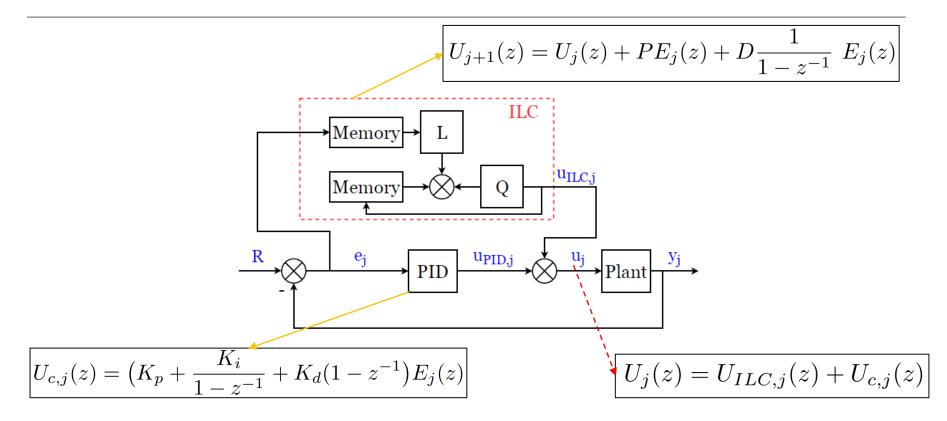
- Iterative Learning Control<sup>4</sup>:
  - ILC is used to improve the tracking performance of systems with repeated dynamics
  - ILC uses previous control inputs and errors to generate new control input:
- Key benefits<sup>5</sup>:
  - Model-free design
  - Simple structure
  - Add-on controller

 $\square$ 

<sup>&</sup>lt;sup>4</sup> Owens, David H. "Iterative learning control: an optimization paradigm," *Springer*, 2015.

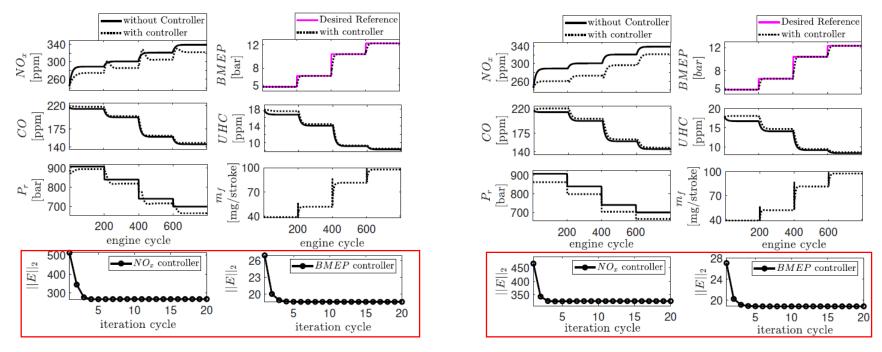
<sup>&</sup>lt;sup>5</sup> Xu, Jian-Xin, et. al. "Real-time iterative learning control: design and applications." Springer Science & Business Media, 2008.

#### Part II: Plug-in Iterative Learning Controller with parallel structure



**SAE International®** SAE WCX Digital Summit

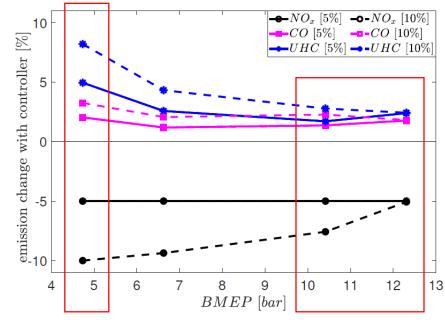
### Part II: Plug-in ILC for NOx reduction and BMEP tracking (ILC+PID)



Target = 5 percent NO<sub>x</sub> reduction

Target = 10 percent NO<sub>x</sub> reduction

#### Part II: Plug-in ILC for NOx reduction and BMEP tracking- Results and Discussions



NO<sub>x</sub>Reduction vs CO and UHC change in steady state for both 5 percent and 10 percent NO<sub>x</sub>reduction goal

 $\square$ 

- Learning-based controller design,
- NOx reduction levels while maintaining the desired engine load,
- Advantage of considering UHC and CO in NOx reduction strategy.

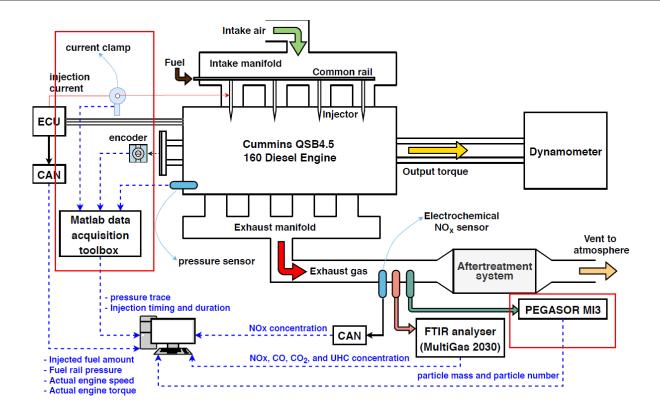
#### Published article:

2020 IEEE Conference on Control Technology and Applications (CCTA) August 24-26, 2020. Montréal, Canada

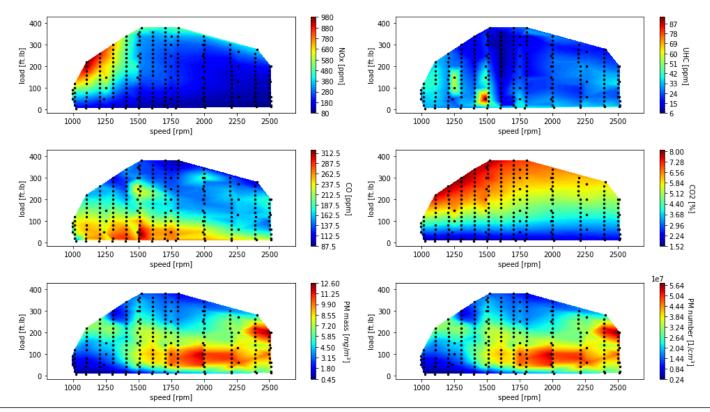
# Machine Learning-based Diesel Engine-Out NOx Reduction Using a plug-in PD-type Iterative Learning Control

Armin Norouzi\*, David Gordon\*, Masoud Aliramezani\*, Charles Robert Koch\*

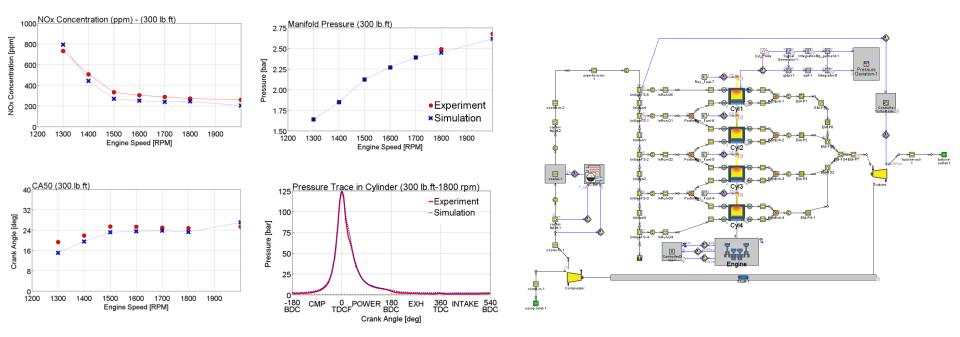
#### Future study- Updated experimental setup



#### **Future study: Experimental results**



#### Future study: GT-power modeling for hybrid emission modeling



# Questions?

University of Alberta (Email: norouziy@ualberta.ca)



